Since nuclear extrusion was rediscovered in young Allium scale by S.H.WU in the years of 1950's systematic investigations on this phenomenon were carried out with various kinds of microscopic techniques and plant materials to collect more effective evidence to clarify the debate about whether the nuclear extrusion is an artifact or normal event. In the cooperative research of S. H. WU and C. H. LOU the normality of the occurrence of nuclear extrusion either in growing part of plant or in senescent tissue has been confirmed. This event is intimately associated with the physiological state of the tissues/cells and may play an important role in redistribution and reutilization of cell contents. Based on the results obtained a hypothesis of intercellular movement of protoplasm as a means of translocation of organic material in plants was suggested. Chromatin extrusion was also discovered in the pollen mother cells (cytomixis) of certain angiosperms by G. C. ZHENG and his team. Intercellular migration of chromatin appears most frequently at the stage of synizesis. Cytomixis has been studied in relation to variation and evolution. Chromosome aberration has been considered to be closely associated with chromatin extrusion. By vital microscopic observations of the live tissues of garlic (Allium sativum L.) bud and wheat (Triticum aestivum L.) ovule combined with cinemicroscopy and video recording it has been uncovered that, not only the nuclear material but also the cytoplasm could traverse the intercellular channels by vigorous contraction and expansion, and they may simultaneously extrude out of a cell but often asynchronously migrate from one cell to another. The involvement of cytoplasmic constituents in intercellular migration was also detected in pollen mother cells with electron microscopy. Regarding the mechanism of intercellular movement a series of experiments provide convincing evidence showing that this kind of movement is an active metabolic process closely coupled with energy metabolism, and t
With light and electron microscopy the substructural change and the ATPase activity of corn (Zea mays L.) root cap cells after short-term osmotic stress were studied. Some spoke-like fine strands originating from the departed periplasm and stretching towards cell wall could be observed even after plasmolysis. By observing the precipitation of ATPase activity product (lead phosphate) at plasma membrane and plasmodesmata, it was found that the fine strands were plasma membrane-lined channels surrounding the cytoplasm and that they still firmly connected to the plasmodesmata during plasmolysis. Compared with the control (unstressed), a sharp decrease of ATPase activity in the plasmodesmata of the stressed cells was observed. Inhibition of energy metabolism in these limited locales would affect the physiological activity, maybe including the regulation of permeability and the change of size exclusion limit (SEL) of plasmodesmata.