2025年3月4日
星期二
|
欢迎来到南京江宁区图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
杨晓微
作品数:
1
被引量:21
H指数:1
供职机构:
北京林业大学工学院
更多>>
发文基金:
中央高校基本科研业务费专项资金
国家自然科学基金
更多>>
相关领域:
自动化与计算机技术
更多>>
合作作者
冷萃
北京林业大学工学院
王怡萱
北京林业大学工学院
阚江明
北京林业大学工学院
作品列表
供职机构
相关作者
所获基金
研究领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
叶片图像
1篇
预处理
1篇
植物
1篇
植物识别
1篇
识别方法
1篇
图像
1篇
图像预处理
机构
1篇
北京林业大学
作者
1篇
阚江明
1篇
王怡萱
1篇
杨晓微
1篇
冷萃
传媒
1篇
科技导报
年份
1篇
2010
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
基于叶片图像的植物识别方法
被引量:21
2010年
基于计算机的植物自动识别是植物识别分类学的发展趋势,本文提出了一种基于植物叶片图像的植物自动识别方法。该方法在对叶片图像进行亮度校正、中值滤波和阈值分割等预处理后,计算植物叶片的偏心率、圆形性、圆形度指标、方向角、最小矩形宽轴/长轴、最佳椭圆短轴/长轴6个形状特征参数和植物叶片的二阶矩、对比度、相关、熵、逆差矩5个纹理特征参数,再使用径向基人工神经网络设计了植物自动识别的分类器。通过对3种植物的60个叶片图像进行实验,仅用植物叶片形状特征进行植物识别的平均正确识别率为70.83%,利用植物叶片形状特征和纹理特征进行植物自动识别的平均正确识别率为83.3%,并得到了径向基人工神经网络的参数。实验结果表明,植物叶片图像的纹理特征能够提高植物自动识别的平均正确率,基于植物叶片图像的植物自动识别是切实可行的,研究成果为深入研究植物自动识别分类系统奠定了一定的理论基础。
阚江明
王怡萱
杨晓微
冷萃
关键词:
植物识别
图像预处理
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张