您的位置: 专家智库 > >

陈重穆

作品数:19 被引量:219H指数:4
供职机构:西南师范大学数学与财经学院数学系更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学文化科学更多>>

文献类型

  • 19篇中文期刊文章

领域

  • 13篇理学
  • 6篇文化科学

主题

  • 6篇定理
  • 6篇有限群
  • 5篇子群
  • 4篇可解
  • 4篇可解群
  • 4篇超可解
  • 4篇超可解群
  • 3篇数学
  • 3篇教学
  • 3篇Π
  • 2篇形式化
  • 2篇义务
  • 2篇义务教育
  • 2篇群系
  • 2篇无限群
  • 2篇幂零
  • 2篇幂零群
  • 2篇教育
  • 2篇极小子群
  • 2篇几个定理

机构

  • 15篇西南师范大学
  • 5篇西南大学

作者

  • 19篇陈重穆
  • 3篇宋乃庆
  • 1篇施武杰
  • 1篇宋乃庆
  • 1篇魏贵民

传媒

  • 7篇西南师范大学...
  • 2篇Journa...
  • 2篇数学年刊(A...
  • 2篇数学教学通讯...
  • 1篇数学教育学报
  • 1篇科学通报
  • 1篇课程.教材....
  • 1篇数学学报(中...
  • 1篇学位与研究生...
  • 1篇川北教育学院...

年份

  • 1篇1998
  • 1篇1996
  • 5篇1995
  • 3篇1994
  • 4篇1993
  • 1篇1992
  • 1篇1991
  • 2篇1990
  • 1篇1988
19 条 记 录,以下是 1-10
排序方式:
内-(π,π′)-闭群与Isaacs定理被引量:2
1990年
一群G叫做内-Σ群,若G不为Σ群但其每真子群为Σ群。群G叫做(π,π′)-闭,若G为π-闭或π′-闭,其中π′是π对素数全集的余集。G叫做π-闭,若其有正规π-Hall子群。本文给出了内-(π,π′)-闭群的结构并得到了下述结果。 设群G的p-Sylow子群循环。如果1)每p′-子群幂零;2)对每q|p-1,G的q-Sylow子群为准正则;3)当p=3时,G与S_4无关,则G为(p,p′)-闭群。
陈重穆
关键词:闭群有限群直积
π Frattini Subgroup and π Local Formation *
1998年
In this paper, our purpose is to make the results about π Frattini subgroup more accurate, and to extend Gaschütz Theorem about nilpotency to π locally defined formation. We come to Theorem Let G be a finite group, H a subnormal subgroup of G. If H/H∩Φ(G)O π′ (G)∈F, then H∈F π, where F π is π solvable π locally defined formation.
陈重穆
Kramer定理的推广被引量:7
1994年
证明了下述定理:定理1(krarner定理的推广)设G为有限可解群,G/N为超可解群.如果对某k及G的每一极大子群L均有等于1或素数,则G为超可解群,其中F_n(G)归纳定义如次:定理2设群G有限可解,为满整群系{f(p)}所局部定义的群系。
陈重穆
关键词:超可解群
关于几乎可解群
1993年
本文推广了关于局部有限群的Asar定理及p.Hall—Kulatilaka,Kargapolov定理.
陈重穆
关于局部定义群系的几个定理被引量:2
1994年
设是子群闭的局部定义群系.G为一有限群;Z(G)是G的超中心子群Ф(G)是G的所有极大-子群的交.本文得出了Z(G)≤Ф(G)及在群为可解时等号成立的条件.此外本文还推广了Yokoyama关于极小子群在超中心内的结果.
陈重穆
关键词:超中心极小子群有限群
淡化形式,注重实质——兼论《九年义务教育全日制初级中学数学教学大纲》被引量:179
1993年
针对当前基础教育和数学教学中存在的问题,提出了在教学中要“淡化形式,注重实质”。结合《初中数学九年制义务教育大纲》的一些重大措施,讨论了“淡化纯文字叙述”及“删减方程的形式理论”等问题,并较详尽地阐述了“淡化概念”的意义。
陈重穆宋乃庆
关键词:非形式化数学教学
浅谈提高课堂效益(GX)被引量:2
1994年
一节课只有45分钟,如何改变传统的教学观念和模式,充分发挥45分钟的作用,提高课堂教学效果,也就是提高课堂效益,乃是教学中的基本问题。目前影响课堂效益的因素诸多,比如片面理解科学性原则、量为性原则,过份注重概念的纯文字叙述等,本文仅就如何处理上述问题来提高课堂效益略呈浅见。
陈重穆宋乃庆
关键词:课堂效益GX量力性原则运算律教改实验
Sylow-正规化子属于群系F的有限群
1996年
设F是可解的,子群闭的,由{f(P)}所局部定义的群系,Fp是由{f(q)}定义的p-局部定义群系.N为幂零群系.本文证明了:1)设F满足:任一群属于F,当且仅当,对每p.其p-Sylow-正规化子属于Fp.于是“群G∈N.F(幂零由F的扩张)的充要条件是,对每P,其p-Sylow-正规化子的Fp剩余次正规于G内.2)群G为超可解的充要条件是,对每p,其p-Sylow-正规化子为p-超可解,且其幂零剩余次正规于G内.若对每p,群G的p-Sylow子群无商群与p2-次对称群的p-Sylow子群同构,则称G为B-群.3)设G为B-群,又群系F含于σ-Sylow塔群系内.于是①G∈F,当且仅当,对每p,G的p-Sylow-正规化属于Fp;②G∈N·F,当且仅当,对每p,G的p-Sylow-正规化子的Fp剩余在G内次正规.
陈重穆
关键词:正规化子超可解群有限群SYLOW子群
群论中推广定理的一种方式被引量:3
1993年
本文讨论之群恒为有限。关于幂零群,It曾建立下面定理:It定理设G为奇阶群。1)若G的素数阶子群均在G的中心内,则G为幂零。2)若G′的素数阶子群均在G内正规,则G可解。
陈重穆
关键词:有限群幂零群超可解群群论
π-局部定义群系的一个定理
1995年
推广Gaschtz关于幂零性的定理到一般π-局部定义群系,得到定理设为π-局部定义群系,又内的群均为可解,M,D为有限群G的正规子群,且DM,D≤Φ(G)。若。
陈重穆魏贵民
关键词:群系
共2页<12>
聚类工具0