为了解决室内动态环境下移动机器人的准确定位问题,提出了一种融合运动检测算法的半直接法RGB-D视觉SLAM(同时定位与地图创建)算法,它由运动检测、相机位姿估计、基于TSDF (truncated signed distance function)模型的稠密地图构建3个步骤组成.首先,通过最小化图像光度误差,利用稀疏图像对齐算法实现对相机位姿的初步估计.然后,使用视觉里程计的位姿估计对图像进行运动补偿,建立基于图像块实时更新的高斯模型,依据方差变化分割出图像中的运动物体,进而剔除投影在图像运动区域的局部地图点,通过最小化重投影误差对相机位姿进行进一步优化,提升相机位姿估计精度.最后,使用相机位姿和RGB-D相机图像信息构建TSDF稠密地图,利用图像运动检测结果和地图体素块的颜色变化,完成地图在动态环境下的实时更新.实验结果表明,在室内动态环境下,本文算法能够有效提高相机位姿估计精度,实现稠密地图的实时更新,在提升系统鲁棒性的同时也提升了环境重构的准确性.
针对快速扩展随机树(rapid-exploration random trees,RRT)算法难以有效解决多场景环境下的机械臂快速运动规划问题,提出一种融合长短时记忆机制的快速运动规划算法.首先,采用高斯混合模型(Gaussian mixture models,GMM)在规划的初始阶段通过随机采样构建环境的场景模型,并利用该模型进行碰撞检测,以提高运动规划效率;然后,根据人类的记忆机制原理,对多场景的不同GMM按照即时记忆、短期记忆和长期记忆进行存储,并通过场景匹配算法实现不同场景GMM的快速自适应提取,提高对变化环境的适应能力;最后,通过在Matlab以及ROS仿真环境下6自由度柔性机械臂的运动规划仿真实验对所提出的算法进行验证.实验结果表明,所提出算法可以快速提取场景的记忆信息,有效提高多场景环境下的运动规划效率,具有较强的适应性.