基于自编码器的特征提取技术广泛应用于图像聚类分析,在较简单的图像集上取得了令人满意的聚类结果,但自编码器的特征表示能力有限,很难捕捉到复杂低质图像的局部特征。本文提出一种基于非对称结构卷积自编码器(Convolutional auto-encoder with an asymmetric structure,ASCAE)的学习视觉特征的深度聚类方法,其中非对称结构的卷积自编码器用于学习特征表示,然后使用K-means算法对特征数据进行聚类分析。为进一步提高特征表示能力,ASCAE方法的网络采用变步长的卷积层和全连接的重构误差正则约束网络的重构误差。在7个公开图像集上的实验结果表明该网络有很好的特征表示能力,并且使得K-means算法能提供很好的聚类结果。在COIL-20和MNIST图像集上,聚类方法ASCAE的聚类精度分别为0.754和0.918,优于同类型的4种深度聚类方法(AEC、IEC、DEC和DEN)。
近年来,基于联合训练的深度聚类方法,如DEC(Deep Embedding Clustering)和DDC(Deep Denoising Clustering)算法,使基于特征提取的图像聚类取得了很多新进展,带来了聚类性能的突破,而且特征提取环节对后续聚类任务有直接影响。但是,这些方法的泛化能力较差,在不同数据集使用不同的网络结构,聚类性能相比分类性能仍有很大的提升空间。为此,文中提出了一种基于自注意力的自监督深度聚类方法(Self-attention Based Self-supervised Deep Clustering,SADC)。首先设计一个深度卷积自编码器用于提取特征,并且用带噪声的输入数据训练该网络来增强模型的鲁棒性;其次引入自注意力机制,辅助网络捕获对聚类有用的信息;最后编码器部分结合K-means算法形成一个深度聚类器,用于进行特征表示和聚类分配,通过迭代更新网络参数来提高聚类精度和网络的泛化能力。在6个图像数据集上验证所提聚类算法的性能,并与深度聚类算法DEC,DDC等进行比较。实验结果表明,SADC能提供令人满意的聚类结果,而且聚类性能与DEC和DDC相当。总之,统一的网络结构在保证聚类精度的同时降低了深度聚类算法的复杂度。