李晓莉
- 作品数:14 被引量:6H指数:1
- 供职机构:长安大学更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:理学自然科学总论经济管理更多>>
- 借助几何直观证明一类积分不等式被引量:1
- 2003年
- 借助几何直观,给出了凸函数积分不等式的证明。
- 李晓莉
- 关键词:凸函数积分不等式
- [0,1]上连续二元算子的细度
- 2003年
- 改进了Yager定义的模糊蕴涵算子的 _度概念.引入连续二元算子的细度概念,并计算了14个连续二元算子的细度.证明了Lukasiewicz蕴涵是理想蕴涵,Reichenbach蕴涵不是理想蕴涵.
- 李晓莉
- 关键词:模糊蕴涵算子模糊推理
- 随机规划问题的最优值和最优解集的稳定性
- 2004年
- 引进了局部化形式的概念,研究了随机规划问题的局部化最优解集和局部化最优值关于概率分布μ的定量稳定性,讨论了随机规划问题局部化最优值关于概率分布μ的连续性及局部化最dξ,优解集的Berge上半连续性.结果表明,当随机规划问题的局部化最优解惟一,且在ξnE‖ξn‖=E‖ξ‖的条件下,随机规划P(ξn)的局部化最优值收敛于P(ξ)的局部化最优limn→∞值,随机规划P(ξn)的局部化最优解集的任一选择收敛于随机规划问题的局部化惟一最优解.
- 李晓莉任建辉
- 关键词:最优解集最优值局部化上半连续性概率分布
- n-集函数的多目标规划问题
- 2002年
- 研究了n 集函数的多目标优化问题 ,在广义凸条件意义下 ,获得了n 集函数优化问题的最优性条件和对偶结果 .
- 李晓莉贾继红
- 关键词:多目标规划弱有效解对偶可微
- 运动FGM矩形薄板的横向振动及其稳定性
- 2011年
- 基于Voigt模型,假定材料的等效物性参数为沿厚度方向的体积分数的幂律变化,以Kirch-hoff薄板理论为基础,建立了运动FGM矩形板的运动微分方程,分析了运动FGM矩形板的横向振动和稳定性.采用微分求积法,对对边简支对边固支和一边固支三边简支2种边界条件下运动FGM矩形板的无量纲复频率进行了数值计算.分析了板材料的梯度指标、板的边长比和无量纲运动速度对其横向振动及稳定性的影响.
- 阮苗李晓莉
- 关键词:稳定性微分求积法
- 非凸多目标规划的最优性和对偶
- 2001年
- 研究了局部半预不变凸函数的优化问题 ,获得了最优性充分条件和必要条件。建立了Mond- Weir型对偶并获得了弱对偶和强对偶定理。
- 李晓莉
- 关键词:最优性条件MOND-WEIR型对偶强对偶弱对偶
- 一种光盘存储装置
- 本实用新型公开了一种光盘存储装置,包括左侧盒盖和右侧盒盖,在左侧盒盖和右侧盒盖中设置有一个或平行设置一个以上的支架和与支架一一对应的光盘仓,设置多个支架与光盘仓时,相邻的支架之间采用插接的方式相对固定,而所有的光盘仓的旋...
- 李晓莉李雅昔曹东会
- 文献传递
- n-集函数多目标规划的对偶被引量:1
- 2005年
- 在较弱凸性条件下,研究了一类可微n集函数的多目标规划问题的对偶问题。首先,对已知集X的子集的σ代数A的n折积An,定义了伪度量d(R,S),给出了相应的特征函数〈h,Is〉;其次,通过特征函数给出了集函数在S°可微的定义及集函数在S°关于第i个变量Si的偏导数定义;给出了多目标规划问题(VP)的弱有效解概念及(VP)的最优性必要条件;最后,分别在目标函数和约束函数的3种较弱凸性条件下,研究n集函数多目标规划问题的对偶问题,获得了3个弱对偶结果和强对偶结果。
- 李晓莉任建辉
- 关键词:弱有效解对偶多目标规划
- 一类静态梁方程的非负解与非正解
- 2005年
- 运用Leray-Schauder拓扑度理论,证明了带导数项的一端简单支撑另一端滑动的静态梁方程的可解性,得出了非负解与非正解存在的判据,仅要求非线性项f在原点的1个邻域满足一定的符号条件,突破了以往对非线性项f的增长性限制。所获结果对工程设计及相关数值计算具有重要的理论意义和实用价值。
- 宋灵宇李晓莉
- 关键词:四阶边值问题正解存在性不动点
- 函数序列收敛与图距离收敛的等价关系
- 2003年
- 通过给出函数序列收敛与函数序列的图以图距离收敛的等价关系,证明了三种函数序列收敛的等价性,讨论了三种函数序列收敛与epi-收敛之间的强弱关系。
- 霍永亮李晓莉
- 关键词:函数序列收敛性连续性等价关系