您的位置: 专家智库 > >

张玉琴

作品数:4 被引量:3H指数:1
供职机构:河北师范大学数学与信息科学学院更多>>
发文基金:河北省自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇理学

主题

  • 1篇等腰
  • 1篇等腰三角形
  • 1篇点共线
  • 1篇点集
  • 1篇直径
  • 1篇凸区域
  • 1篇偶圈
  • 1篇平凡
  • 1篇平移
  • 1篇注记
  • 1篇完美匹配
  • 1篇格点
  • 1篇共线
  • 1篇共圆

机构

  • 4篇河北师范大学
  • 2篇石家庄铁道学...

作者

  • 4篇张玉琴
  • 2篇魏祥林
  • 2篇苑立平
  • 1篇丁仁

传媒

  • 2篇河北师范大学...
  • 1篇石家庄铁道学...
  • 1篇南开大学学报...

年份

  • 1篇2005
  • 1篇2004
  • 1篇2003
  • 1篇2002
4 条 记 录,以下是 1-4
排序方式:
可平移格点多边形的内格点数
2005年
   给定多边形P,如果经过平移P可以覆盖整个平面,则称之为可平移多边形。若P为凸格点多边形,其内部边界不交平移覆盖平面格点集,则称之为可平移格点多边形TLP。记顶点数为v的TLP的内格点数的下确界为i(v) ,得出i(5) =i(6) =1,i(7) =i(8) =4。证明了随着TLP顶点数的增加,内格点数无限增加。并得出在允许旋转 180°条件下,有任意内格点数的三角形TLP, 任意格点四边形都是TLP。
魏祥林张玉琴
一类4-等腰6元集被引量:2
2004年
P为平面有限集(P R2),称P为k等腰的(k≥3):若P的每个k子集均含有等腰三角形,即含有1个3元子集,其中1点到其他2点的距离相等.Fishburn提出是否存在无4点共圆、无3点共线的4等腰6元集.现在就此问题构造一类无4点共圆的4等腰6元集和一类无4点共圆、无3点共线的4等腰6元集.
魏祥林张玉琴
关键词:等腰三角形
关于完美匹配的一个注记被引量:1
2002年
图 G有完美匹配当且仅当对于其顶点集 V的任意子集 S,G-S的奇分支的个数不超过 S中元素的个数 .对此结论证明中存在的一个问题进行了详细讨论 ,从而使证明更加完善 .
苑立平张玉琴
关键词:完美匹配偶圈
关于凸区域内的格点数
2003年
设D为平面内一凸区域,本文根据D的面积与D的半周长与直径之和之间的关系,讨论凸区域D内 所包含的格点的个数。
苑立平张玉琴丁仁
关键词:凸区域格点直径
共1页<1>
聚类工具0