滚动轴承故障振动信号往往是多分量的调幅-调频信号,而传统包络分析方法需要根据经验设置滤波器的中心频率与带宽,因而会带来解调误差.基于此,提出了一种基于局域均值分解(local mean de-composition,简称LMD)的包络谱特征值的滚动轴承故障诊断方法.该方法可以将一个多分量的调幅-调频信号分解成若干瞬时频率具有物理意义的PF(product function,简称PF)分量之和,由于每一个PF分量是分量包络信号和纯调频信号的积,因此可以直接对包络信号进行频谱分析得到包络谱.然后定义信号在包络谱中不同故障特征频率处的幅值比为包络谱特征值,并以此作为特征向量输入到支持向量机分类器中,用以区分滚动轴承的工作状态和故障类型.对滚动轴承正常状态、内圈故障和外圈故障振动信号的分析结果表明了该方法的有效性.
将基于变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的方法引入滚动轴承的故障诊断,提出了基于EMD(Empirical Mode Decomposi-tion,EMD)和VPMCD的滚动轴承故障诊断方法.采用EMD方法提取滚动轴承振动信号特征向量后,以VPMCD作为模式识别方法对滚动轴承的工作状态和故障类型进行分类.对正常状态、外圈故障、内圈故障3种不同类别下的滚动轴承振动信号进行了分析,结果表明了该方法在滚动轴承故障诊断中的有效性.同时,与人工神经网络(Artificial neural net-work,ANN)算法的对比分析表明,VMPCD算法分类性能的稳定性以及计算效率均要高于ANN算法.