艾丽
- 作品数:12 被引量:333H指数:9
- 供职机构:广州市环境保护科学研究院更多>>
- 发文基金:国家自然科学基金国家科技支撑计划中央级公益性科研院所基本科研业务费专项更多>>
- 相关领域:农业科学环境科学与工程更多>>
- 祁连山中部高山草甸土壤有机碳矿化及其影响因素研究被引量:22
- 2007年
- 分析了室内培养土壤温湿度变化对祁连山海拔3500,3600,3700和3800m处高寒草甸土壤有机碳矿化的影响。结果显示土壤有机碳累积矿化量及其比例为35℃下最高,土壤含水量为30%和40%下比10%和20%下高,0~15cm土层比15~35cm土层中高。土壤有机碳矿化速率及其占有机碳含量比例随培养时间延长而递减。土壤有机碳矿化速率及其比例为35℃下最高,土壤含水量为30%和40%下比10%和20%下高,0~15cm土层比15~35cm土层中高。一阶动态方程拟合土壤有机碳矿化动态效果较好。5℃下分解率系数和活性有机碳库较低。5℃升高到15℃,Q10为1~6,15℃升高到25℃.Q10为1~2。结果表明祁连山高寒草甸表层土壤有机碳分解受温湿度变化的影响较大。
- 艾丽吴建国朱高刘建泉田自强苌伟夏新
- 关键词:土壤有机碳矿化高寒草甸
- 土壤有机碳和全氮含量及其与海拔、植被和气候要素的关系——以祁连山中段北坡为研究对象被引量:16
- 2010年
- 调查分析祁连山北坡土壤有机碳和全氮含量随海拔变化的趋势及其与气候要素和植被的关系。结果显示:就土壤有机碳含量,在0~5cm、5~1 5cm和1 5~30cm土层,低海拔(2200m)和高海拔(3600m)处较低,中间海拔(3000~3500m)处较高;灌丛草甸>森林>高寒草甸>干旱草原>荒漠草原(P<0.05)。就土壤全氮含量,0~5cm和5~1 5cm土层,3400m和3500m处较高,2200m和2800m处较低;1 5~35cm土层,3400m处较高、2200m和2800m处较低;0~5cm土层,灌丛草甸>高寒草甸>森林>干旱草原>荒漠草原;5~1 5和1 5~35cm土层,灌丛草甸>森林>高寒草甸>干旱草原>荒漠草原(P<0.05)。就土壤碳氮比,在0~5cm、5~1 5cm和15~30 cm土层,3000m和3200m处最高;2300m和2800m处最低;森林>灌丛草甸>高寒草甸>干旱草原或荒漠草原。土壤有机碳和全氮含量及碳氮比总体上都随年均温度增加而降低,随年降水量增加而增加。不考虑海拔差异,0~5cm、5~1 5cm和1 5~30cm土层土壤有机碳和全氯含量相关系数较高;考虑海拔差异,在不同土层和海拔的差异较大。
- 艾丽吴建国刘建泉苌伟田自强常学向李捍东刘贤德
- 关键词:土壤有机碳土壤全氮气候要素
- 祁连山中部高寒草甸土壤氮矿化及其影响因素研究被引量:61
- 2007年
- 分析了温湿度变化对祁连山海拔3500。3600,3700和3800m处高寒草甸土壤氮矿化的影响。结果显示,以土壤氮矿化量极差计,温度和湿度对土壤氮矿化影响最大,土层和温湿度交互作用影响较小;以土壤氮矿化比例极差计,温度和海拔影响最大,湿度其次,土层影响较小。温度对土壤氮的矿化影响显著(P〈0.05)。35℃下土壤氮矿化量最高,25℃下显著比5℃下高(P〈0.05);不同温度下土壤氮矿化比例差异不显著(P〉0.05)。土壤含水量为20%和40%下土壤氮矿化量较高,60%和80%下较低(P〈0.05),不同湿度下土壤氮矿化比例差异不显著(P〉0.05)。海拔3800m处土壤氮矿化比例最低。以土壤氮矿化速率计,5℃升高到15℃,Q10较高,15℃升高到25℃及25℃升高到35℃,Q10接近;以土壤氮矿化比例计,5℃升高到15℃,Q10较低,15℃升高到25℃以及25℃升高到35℃,Q10都接近2。结果说明在20%~80%土壤湿度范围内,温度升高将使祁连山高寒草甸土壤氮的矿化速率增加。
- 吴建国韩梅苌伟艾丽常学向
- 关键词:土壤氮矿化高寒草甸
- 祁连山三种典型生态系统土壤中碳和氮矿化的研究
- 艾丽
- 关键词:气候变化
- 祁连山中部土壤颗粒组分有机质碳含量及其与海拔和植被的关系被引量:16
- 2008年
- 调查分析了祁连山中段不同海拔土壤颗粒有机碳及其与植被的关系。结果显示,土壤颗粒组分比例在0~15cm和15~35cm土层随海拔升高而呈现下降趋势(P>0.2);土壤颗粒有机碳比例在0~15cm土层随海拔升高也呈现下降趋势(P≤0.001)。土壤颗粒组分比例0~15cm土层在阴坡3000m^3500m、15~35cm土层在阴坡3200m和3500m及半阴坡2200和2800m处较高;土壤颗粒有机碳比例0~15cm土层在阴坡3000m和3200m、半阴坡2200m和2800m,以及15~35cm土层在阴坡3200m和3500m、阳坡3300m和3500m处较高(P<0.05)。土壤颗粒有机碳和颗粒组分碳含量随海拔升高变化不显著(P<0.9)。土壤颗粒有机碳含量0~15cm土层在阴坡3000m^3500m、15~35cm土层在阴坡3000m^3500m及阳坡3300m处较高;土壤颗粒组分碳含量0~15cm土层在阴坡3000m^3400m和阳坡3300m,以及15~35cm土层在阴坡3200m和3400m及阳坡3300m处较高。土壤颗粒组分比例0~15cm土层在森林和灌丛草甸中较高;15~35cm土层在森林、灌丛草甸和干旱草原中较高(P<0.05)。土壤颗粒有机碳比例0~15cm土层在荒漠草原和干旱草原,以及15~30cm土层在森林和灌丛草甸中较高(P<0.05)。土壤颗粒组分碳含量0~15cm和15~35cm土层在森林和灌丛草甸中较高(P<0.05)。土壤颗粒有机碳含量0~15cm和15~35cm土层在森林中最高(P<0.05)。土壤颗粒组分碳含量和颗粒有机碳含量与土壤有机碳含量有显著的正相关性(P<0.001),土壤颗粒有机碳含量与颗粒组分碳含量也有显著的正相关性(P<0.001),土壤颗粒组分比例与有机碳含量相关性不显著(P=0.15),土壤颗粒有机碳含量与颗粒组分比例有显著正相关性(P<0.005)。结果说明祁连山中部北坡土壤有机碳稳定性受植被和海拔共同影响,荒漠草原和干旱草原表层土壤有机碳稳定性较低,森林和灌丛草甸土壤中非保护性碳含量较高。
- 吴建国艾丽田自强常学向
- 关键词:土壤有机碳颗粒有机碳
- 祁连山中部四种典型生态系统土壤氮矿化的研究被引量:17
- 2007年
- 水热因素对土壤氮矿化的影响直接关系到陆地生态系统功能对气候变化的响应趋势。祁连山是青藏高原北沿的典型山地,对气候变化影响十分敏感和脆弱,为了定量确定祁连山土壤氮分解对水热因素变化的响应趋势,在人工气候箱内以正交试验设计方法培养土壤,分析了祁连山高寒草甸、山地森林、荒漠草原和干草原土壤氮矿化及其与温度、湿度和土层的关系。结果显示:以土壤氮矿化量极差计,海拔高度影响最大,其次是温度和湿度;以土壤氮矿化比例极差计,温度和海拔高度影响较大。海拔高度对土壤氮矿化量的影响显著(p<0.05)。除湿度外,其它因素对土壤氮矿化比例影响也达到显著程度(p<0.10)。35℃下土壤氮矿化比例显著比5℃下高,而不同湿度下土壤氮矿化及其矿化比例差异不显著(p<0.05)。海拔高度3000m和3300m处土壤氮矿化量比2800m和2200m处高,2800m处比2200m处高,3000m处土壤氮矿化比例显著比2200m和3300m处高(p<0.05)。森林和干旱草原土壤中氮矿化比例较高,荒漠草原和高寒草甸中较低。以土壤氮矿化速率计,5℃升高到15℃下和15℃升到25℃,Q10较低;以土壤氮矿化比例计,5℃升高到15℃下,Q10较高,15℃到25℃较低。研究结果说明高寒草甸和山地森林土壤氮矿化量较高,干旱草原和荒漠草原土壤氮矿化量较低;森林和干旱草原中土壤氮矿化比例较高,荒漠草原和高寒草甸中较低。
- 吴建国苌伟艾丽常学向
- 关键词:土壤氮矿化高寒草甸山地森林干旱草原荒漠草原
- 土壤颗粒组分中氮含量及其与海拔和植被的关系被引量:9
- 2008年
- 研究祁连山北坡土壤颗粒组分中氮含量及其与海拔和植被的关系。结果表明:土壤颗粒组分比例、土壤颗粒氮比例、土壤颗粒氮含量和土壤颗粒组分氮含量都随海拔升高而差异不显著;就土壤颗粒组分比例而言,0~15cm土层在阳坡3800m处、阴坡3000、3200和3500m处较高,15~35cm土层在阴坡3200和3500m、半阴坡2800m处较高(p〈0.05);就土壤颗粒氮比例而言,0~15cm土层在阴坡3000和3200m、阳坡3300和3800m处最高,15~35cm土层在阴坡3000m和阳坡3300m处最高;就土壤颗粒氮含量而言,0~15cm土层在阴坡3600m处最低,阳坡3800m和半阴坡2800m处较高,15~35cm土层在阴坡3400m、阳坡3300m处较高;就土壤颗粒组分氮含量而言,0~15cm土层在阴坡3400m、阳坡3300和3800m处较高,15~35cm土层在阴坡3400m、阳坡3300m处较高(p〈0.05);植被对土壤颗粒组分比例、土壤颗粒氮比例、土壤颗粒组分氮含量和土壤颗粒氮含量的影响显著;就土壤颗粒组分比例而言,0~15cm土层在森林和灌丛草甸中较高,高寒草甸中较低,森林与灌丛草甸及干草原与荒漠草原中差异不显著,15~35cm土层在森林、灌丛草甸和干草原中较高,高寒草甸中最低,森林、灌丛草甸与干草原中差异不显著;就土壤颗粒氮比例而言,0~15cm土层在森林和高寒草甸中较高,灌丛草甸、荒漠草原与干草原中差异也不显著,15~35cm土层在森林和高寒草甸中较高,荒漠草原和干草原中最低;就土壤颗粒组分氮含量而言,各土层均在灌丛草甸中较高,干草原和荒漠草原中较低;就土壤颗粒氮含量而言,各土层均在森林和灌丛草甸中最高,干草原和荒漠草原中最低,森林、高寒草甸与灌丛草甸中差异不显著;土壤颗粒组分比例、土壤颗粒组分氮含量、土壤颗粒氮比例和土壤颗粒氮含量随土壤全氮含量增加而增加(p〈0.02),土壤颗粒氮含量随颗粒组分氮含量极显著增加(p〈0.00
- 吴建国艾丽
- 关键词:海拔植被土壤全氮
- 祁连山中部四种典型生态系统土壤有机碳矿化及其影响因素被引量:24
- 2007年
- 以正交试验培养土壤探讨了祁连山4种典型生态系统土壤有机碳矿化及其与温湿度的关系。结果表明:温度对土壤有机碳累积矿化量及其比例影响显著(P<0.05)。就土壤有机碳累积矿化量,35℃和25℃比5℃下高(P<0.05);土壤培养14d,10%含水量下为最低,山地森林土壤比荒漠草原和干草原高,高寒草甸比荒漠草原高(P<0.05)。就土壤有机碳矿化比例,35℃和25℃比5℃下高,35℃比15℃下高(P<0.05);荒漠草原和干草原比山地森林和高寒草甸低(P<0.05)。土壤有机碳矿化速率及其比例随培养时间延长而递减。温度和生态系统类型对土壤有机碳矿化速率及比例影响显著(P<0.05)。就土壤有机碳矿化速率,25℃和35℃比5℃下高(P<0.05);土壤培养0~4d和6~10d,10%含水量下最低,高寒草甸和山地森林比荒漠草原高(P<0.05)。就土壤有机碳矿化速率比例,25℃和35℃比5℃下高,35℃比15℃下高;山地森林和高寒草甸比荒漠草原和干草原中高(P<0.05)。一阶动态方程拟合土壤有机碳矿化动态效果较好(R2>0.95)。表明祁连山4种典型生态系统土壤有机碳分解受温度变化影响较大。
- 吴建国艾丽苌伟
- 关键词:土壤有机碳矿化山地森林高寒草甸干旱草原荒漠草原
- 气候变化对生物多样性的影响:脆弱性和适应被引量:89
- 2009年
- 气候变化对生物多样性影响及其适应直接关系着未来生物多样性的保护。气候变化对生物多样性影响、生物多样性在气候变化影响下的脆弱性、生物多样性适应气候变化方面进行了总结分析,对存在的问题进行了讨论,对今后研究提出了一些建议。过去的气候变化已使物种物候、分布和丰富度等改变,使一些物种灭绝、部分有害生物危害强度和频率增加,使一些生物入侵范围扩大、生态系统结构与功能改变等。未来的气候变化仍将使物种物候和行为、分布和丰富度等改变,使一些物种灭绝、使有害生物爆发频率和强度增加,并将可能使生态系统结构与功能发生改变等。生物多样性适应气候变化包括了自然适应和人为适应两个方面,自然适应体现在物种适应性进化、迁移、生态系统稳定性和弹性等,人为适应体现在种质基因保存、物种异地保护、自然保护区规划设计、生态系统适应性管理、生态恢复和气候灾害防御等。目前,生物多样性对气候变化影响的脆弱性、生物多样性自然适应和人为适应气候变化方面的研究都还不系统深入,需要加强生物多样性自然适应和人为适应气候变化方面的研究。
- 吴建国吕佳佳艾丽
- 关键词:脆弱性气候变化生物多样性
- 祁连山北坡云杉林和草甸土壤有机碳矿化及其影响因素被引量:37
- 2007年
- 为确定祁连山典型生态系统土壤有机碳分解对水热因素变化的响应趋势,在人工气候箱内以正交试验好气培养土壤,应用差异性检验和一阶动态方程方法分析了祁连山青海云杉(Picea crassifolia)林和高寒草甸土壤有机碳矿化及其与温度、湿度、土层和海拔的关系。结果显示:温度对土壤有机碳矿化量、矿化速率及其比例的影响最大,其次是土壤湿度;这些变量在35℃下最高(P〈0.01),土壤含水量为10%时最低,不同海拔间差异不显著;土壤有机碳矿化量在0~15cm比15~35cm土层高,但矿化比例差异不显著;土壤有机碳矿化势随温度的升高而增加,土壤含水量为10%时较低,矿化速率系数在35℃下最高(P〈0.05);从05℃升到15℃,Q10为1.5~7.5,15℃升到25℃,为1~2,25℃升到35℃,为1.5~3.5。结果说明温度从5℃升高到35℃,土壤含水量在20%~40%,祁连山中部山地森林和高寒草甸土壤有机碳矿化速率将可能增加3~10倍以上。
- 吴建国艾丽朱高田自强苌伟
- 关键词:土壤有机碳矿化山地森林高寒草甸