何艳
- 作品数:3 被引量:6H指数:2
- 供职机构:江南大学物联网工程学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:电子电信语言文字更多>>
- 一种静态特征与动态特征结合的方言辨识方法被引量:2
- 2012年
- 针对MFCC仅反映语音静态特征导致的方言识别率低的问题,而SDC由于考虑了前后帧差分倒谱的影响,能反映语音的动态特征;同时考虑方言的静态与动态特征,对普通话、上海话、广东话和闽南话4种方言进行MFCC特征和SDC特征提取,将其两组特征组合送入支持向量机进行辨识,并研究了针对4种方言的SDC的局部最优参数组合。仿真实验结果表明,同时考虑方言的静态与动态特征方法的识别率高达92.5%,但识别率的提高是以延长运算时间为代价的。
- 何艳于凤芹
- 关键词:方言辨识MEL频率倒谱系数支持向量机
- 基于PCA和LDA的方言辨识
- 2012年
- 针对PCA没有有效利用样本的类别信息而导致方言识别率低的问题,采用PCA和LDA组合方法进行特征提取。首先用PCA对普通话、上海话、广东话和闽南话四种方言进行降维,然后在降维后的空间中用LDA进一步特征提取,最后将该特征向量送入BP神经网络进行辨识。仿真实验结果表明,基于PCA和LDA的方言识别的平均识别率高达85%。
- 何艳于凤芹
- 关键词:方言辨识主成分分析线性鉴别分析BP神经网络
- 基于时频分布与MFCC的说话人识别被引量:4
- 2012年
- 针对MFCC不能得到高效的说话人识别性能的问题,提出了将时频特征与MFCC相结合的说话人特征提取方法。首先得到语音信号的时频分布,然后将时频域转换到频域再提取MFCC+MFCC作为特征参数,最后通过支持向量机来进行说话人识别研究。仿真实验比较了MFCC、MFCC+MFCC分别作为特征参数时语音信号与各种时频分布的识别性能,结果表明基于CWD分布的MFCC和MFCC的识别率可提高到95.7%。
- 金银燕于凤芹何艳
- 关键词:短时傅里叶变换WIGNER-VILLE分布MEL频率倒谱系数说话人识别