Compared with BVcEo, BVcEs is more related to collector optimization and more practical significance, so that BVcEs × fT rather than BVcEo ×fT is employed in representing the limit of the product of the breakdown voltage-cutoff frequency in SiGe HBT for collector engineering design. Instead of a single decrease in collector doping to improve BVcEs × fT and BVcEo × fT, a novel thin composite of N- and P+ doping layers inside the CB SCR is presented to improve the well-known tradeoff between the breakdown voltage and cut-off frequency in SiGe HBT, and BVCES and BVCEO are improved respectively with slight degradation in fTAs a result, the BVcEs × fT product is improved from 537.57 to 556.4 GHz.V, and the BVcEo ×fT product is improved from 309.51 to 326.35 GHz.V.
In this paper, the positive influence of a uni-traveling-carrier (UTC) structure to ease the contract between the respon- sivity and working speed of the InP-based double hetero-junction phototransistor (DHPT) is illustrated in detail. Different results under electrical bias, optical bias or combined electrical and optical bias are analyzed for an excellent UTC-DHPT performance. The results show that when the UTC-DHPT operates at three-terminal (3T) working mode with combined electrical bias and optical bias in base, it keeps a high optical responsivity of 34.72 A/W and the highest optical transition frequency of 120 GHz. The current gain of the 3T UTC-DHPT under 1.55-μm light illuminations reaches 62 dB. This indicates that the combined base electrical bias and optical bias of 3T UTC-DHPT can make sure that the UTC-DHPT provides high optical current gain and high optical transition frequency simultaneously.
We report the fabrication details of a monolithically integrated electro-absorption modulated distributed feedback laser (EML) based on the ion-implantation induced quantum well intermixing (QWI) technique. To well-preserve material quality in the laser region, thermal-oxide SiO2 is deposited before implantation and the ion-implantation buffer layer is etched before annealing. Thirteen pairs quantum well and barrier are employed to compensate deterioration of the modulator's extinction ratio (ER) caused by the QWI process. The fabricated EML exhibits an 18 dB static ER at 5 V reverse bias. The 3 dB small signal modulation band- width of modulator is over 13.5 GHz indicating that this EML is a suitable light source for over 16 Gb/s optical transmission links.
The thermal resistance matrix including self-heating thermal resistance and thermal coupling resistance is presented to describe the thermal effects of multi-finger power heterojunction bipolar transistors. The dependence of thermal resistance matrix on finger spacing is also investigated. It is shown that both self-heating thermal resistance and thermal coupling resistance are lowered by increasing the finger spacing, in which the downward dissipated heat path is widened and the heat flow from adjacent fingers is effectively suppressed. The decrease of self-heating thermal resistance and thermal coupling resistance is helpful for improving the thermal stability of power devices. Furthermore, with the aid of the thermal resistance matrix a 10-finger power heterojunction bipolar transistor (HBT) with non-uniform finger spacing is designed for high thermal stability. The optimized structure can effectively lower the peak temperature while maintaining a uniformity of the temperature profile at various biases and thus the device effectively may operate at a higher power level.
We report the fabrication of widely tunable ridge waveguide distributed Bragg reflector (DBR) lasers with InGaAsP butt-joint as grating material. The shape of the butt-joint interface is found to have significant effect on the properties of the lasers. It is shown that irregular mode jumps during wavelength tuning can be avoided by a V-shaped butt-joint interface. From the fabricated device, 23 channels with 0.8 nm spacing and greater than 35 dB side mode suppression ratios are obtained. The different tuning characteristics of the ridge waveguide and the previously reported buried ridge stripe DBR lasers are discussed. Combined with the wide tuning range and the simple structure, the ridge waveguide DBR lasers are promising for use in wavelength division multiplexing passive optical networks (WDM-PONs).
A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions.
With the aid of a thermal-electrical model, a practical method for designing multi-finger power heterojunction bipolar transistors with finger lengths divided in groups is proposed. The method can effectively enhance the thermal stability of the devices without sacrificing the design time. Taking a 40-finger heterojunction bipolar transistor for example, the device with non-uniform emitter finger lengths is optimized and fabricated. Both the theoretical and the experimental results show that, for the optimum device, the peak temperature is lowered by 26.19 K and the maximum temperature difference is reduced by 56.67% when compared with the conventional heterojunction bipolar transistor with uniform emitter finger length. Furthermore, the ability to improve the uniformity of the temperature profile and to expand the thermal stable operation range is strengthened as the power level increases, which is ascribed to the improvement of the thermal resistance in the optimum device. A detailed design procedure is also summarized to provide a general guide for designing power heterojunction bipolar transistors with non-uniform finger lengths.