High-performance silicalite-1 membranes were successfully synthesized on novel porous silica tubes by two-step in-situ hydrothermal synthesis. The flux and separation factor towards ethanol/water mixture at 60°C were 0.56 kg/(m2·h) and 84, respectively. The as-synthesized silicalite-1 membranes were characterized by scanning electron microscopy (SEM). The influence of different synthesis conditions on the separation performance of the silicalite-1 membranes was investigated. It was found that the average flux of silicalite-1 membranes was improved by about 26% after filling the silica tubes with mixed solution containing glycerol and water. After calcinating at 400°C for 5 h repeatedly, membrane synthesized on silica tube still showed high pervaporation performance towards ethanol/water mixture even at a calcination rate of 4°C/min, which suggested that silica support was more suitable for preparing high-performance silicalite-1 membranes.
High-reproducibility silicalite-1 membranes were synthesized on silica tubes by in-situ hydrothermal synthesis, and the relative standard deviation (R.S.D.) of average separation factor for eight membranes was only 7.5%. By using an effective method called "solution-filling (SF)", the average flux of membranes prepared with SF method was improved by about 49% compared to membranes prepared without SF method, and the highest flux of membrane prepared with SF method towards ethanol/H2O mixture at 80℃ was 1.49 kg/(m2·h). Pervaporation experiments showed that the fluxes of silicalite-1 membranes at 60℃ were 2.63, 0.87, 0.24, and 0.20 kg/(m2·h) towards methanol/H2O, ethanol/H2O, 2-propanol/H2O, and 1-propanol/H2O mixtures, respectively, and the corresponding separation factors were 22, 69, 81, and159, respectively.
High-performance silicalite-1 membranes were synthesized on silica tubes by in-situ hydrothermal synthesis. By using the “solution-filling (SF)” method, the average flux of membranes with the SF method was improved by about 25% compared to that of the membranes without using the SF method; the flux and the separation factor of the membranes prepared with the SF method for an ethanol/water mixture at 60°C were 0.99 kg/(m2·h) and 73, respectively. It was found that the membranes synthesized on silica tubes exhibited high thermal stability and high reproducibility, and the relatively standard deviations (R.S.D.) of the average flux and separation factor were only 9.6% and 5.6%, respectively, which suggests that the silica support is more suitable than other kinds of supports for preparing high-performance silicalite-1 membranes.