搜索到2155篇“ SNAPSHOT“的相关文章
Analysis of Temporal Correlation in Visual Data Based on Snapshot Compressive Imaging
2025年
Video snapshot compressive imaging(Video SCI) modulates scenes using various encoding masks and captures compressed measurements with a low-speed camera during a single exposure. Subsequently, reconstruction algorithms restore image sequences of dynamic scenes, offering advantages such as reduced bandwidth and storage space requirements. The temporal correlation in video data is crucial for Video SCI, as it leverages the temporal relationships among frames to enhance the efficiency and quality of reconstruction algorithms, particularly for fast-moving objects.This paper discretizes video frames to create image datasets with the same data volume but differing temporal correlations. We utilized the state-of-the-art(SOTA) reconstruction framework, EfficientSCI++, to train various compressed reconstruction models with these differing temporal correlations. Evaluating the reconstruction results from these models, our simulation experiments confirm that a reduction in temporal correlation leads to decreased reconstruction accuracy. Additionally, we simulated the reconstruction outcomes of datasets devoid of temporal correlation, illustrating that models trained on non-temporal data affect the temporal feature extraction capabilities of transformers, resulting in negligible impacts on the evaluation of reconstruction results for non-temporal correlation test datasets.
Yanxin CaiXun LiuNingjuan RuanWei Li
基于SNaPshot的基因单核苷酸多态位点分析方法
本发明涉及生物信息学和分子生物学领域,公开了一种基于SNaPshot的基因单核苷酸多态位点分析方法,方法包括:获取待测样本的基因组DNA序列数据,提取其中的SNP位点信息,设计位点特异性引物,利用SNaPshot技术进行...
任莉荣苏静刘飞飞阮玉山李绍波
基于三元自注意力的视频快照压缩成像重建被引量:1
2025年
视频快照压缩成像(SCI)是一种基于计算的成像技术,通过在时间域和空间域上的混合压缩来实现高效成像。在视频SCI中,利用信号的稀疏性以及它在时间域和空间域中的相关性并采用合适的视频SCI算法,有效地重建原始视频信号。虽然基于深度学习的重建算法在多数任务中取得了良好的效果,但是还存在过高的模型复杂度和较慢的重建速度。为解决这些问题,提出一个基于三元自注意力的视频快照压缩成像重建网络模型SCT-SCI,利用多分支分组自注意力机制来利用时间域和空间域的相关性。SCT-SCI模型由一个特征提取模块、一个视频重建模块和多个三元自注意力模块SCT-Block组成。每个SCT-Block由一个窗口自注意力分支、一个通道自注意力分支和一个时序自注意力分支组成,同时引入空间聚合模块SC-2DFusion和全局聚合模块SCT-3DFusion加强特征融合。实验结果显示,在模拟视频数据集上,该模型具有低复杂度的优势,在保证接近的重建质量的前提下相比EfficientSCI模型节省了31.58%的重建时间,提升了实时性能。
周宇谢威邝得互江健民
关键词:压缩感知
基于场量梯度的快照分区POD降阶计算方法
2025年
随着数字化电力系统的不断发展,对高价值电力装备数字孪生模型的研究成为热点。为满足计算的时效性,通常采用模型降阶的方法,其中本征正交分解法(proper orthogonal decomposition,POD)是最为常用的方法之一。传统的POD方法在构造快照时无法高效提取网格节点信息,造成大的计算量、存储资源浪费。为此,该文提出基于场量梯度的快照分区POD降阶计算方法,以快照中各节点场量梯度为依据对计算域进行分区处理,通过对不同分区的节点数量进行不同程度的缩减,实现了高效的POD降阶计算。以换流变阀侧套管极性反转电场作为算例,对该文提出分区降阶方法的可行性及高效性进行了验证。研究结果显示:相较于有限元方法,计算时间缩短97.1%,同时相较于传统的POD方法,其快照中节点数量减少95.2%,节约存储资源91.7%。同时,分区降阶计算的准确率高,平均误差仅为0.80%,实现了对阀侧套管极性反转电场的高效计算。
杨帆张潋镪何永胜王鹏博姜慧
关键词:本征正交分解法换流变
溯源系统区块链数据快照生成与高速检索算法
2025年
食品安全的快速溯源是减少食品危害的重要手段,目前针对该问题的研究仍不能满足高速且准确的溯源需求。本文将传统数据库技术和现代区块链技术相结合,建立区块链快照的结构化数据,既保持了区块链的数据安全特性,又能利用关系数据库具备快速检索的技术框架,从而让检索数据的性能提高2~10倍。遴选百万级的商品数据进行模拟溯源和性能评测,实验结果表明了区块链快照技术和高速检索算法的合理性和可行性。
汪继辉余宏杰
关键词:区块链快照
新一代冠状动脉运动追踪冻结技术用于改善不同心率患者冠状动脉CT血管成像质量
2025年
目的观察新一代冠状动脉追踪冻结(NG SSF)技术用于改善不同心率(HR)患者冠状动脉CT血管成像(CCTA)质量的效果。方法回顾性分析利用256排CT机于1个心动周期内采集的164例CCTA数据,管电压分别为80、100及120 kV,以智能心电门控技术判断HR并自动选择曝光期相:对HR≤65次/分者(低HR组)将曝光时间窗设在70%~80%R-R间期,65次/分85次/分(高HR组)者设在40%~60%R-R间期;对3组图像分别以标准重建算法(STD)、第一代追踪冻结(SSF1)技术及NG SSF进行重建。以Likert量表对3种图像所示右冠状动脉(RCA)、左前降支(LAD)及左回旋支(LCX)各节段进行主观评分。结果低HR组NG SSF重建图像中的LAD中远段、RCA及LCX全段得分均高于STD,而NG SSF重建图像中的RCA中段及LAD远段得分高于SSF1重建图像(P均<0.05);中等HR组NG SSF重图像显示冠状动脉各节段的主观评分均高于STD及SSF1重建图像(P均<0.05);高HR组NG SSF重建图像显示冠状动脉各节段的主观评分均高于STD,显示RCA近远段、LAD中远段及LCX全段的主观评分均高于SSF1重建图像(P均<0.05)。结论利用NG SSF技术能有效提升不同HR患者前瞻性心电门控CCTA成像质量。
安备张卓璐刘卓付玲商旭刘磊程瑾
关键词:冠状动脉疾病CT血管成像
Snapshot imaging of ultrashort electron bunches
2024年
New measurements combine spatial and temporal information from optical transition radiation to estimate the three-dimensional structure of electron bunches from a laser wakefield accelerator.
Andreas Döpp
关键词:ULTRASHORTSNAPSHOTELECTRON
Predicting Energy Consumption Using Stacked LSTM Snapshot Ensemble
2024年
The ability to make accurate energy predictions while considering all related energy factors allows production plants,regulatory bodies,and governments to meet energy demand and assess the effects of energy-saving initiatives.When energy consumption falls within normal parameters,it will be possible to use the developed model to predict energy consumption and develop improvements and mitigating measures for energy consumption.The objective of this model is to accurately predict energy consumption without data limitations and provide results that are easily interpretable.The proposed model is an implementation of the stacked Long Short-Term Memory(LSTM)snapshot ensemble combined with the Fast Fourier Transform(FFT)and meta-learner.Hebrail and Berard’s Individual Household Electric-Power Consumption(IHEPC)dataset incorporated with weather data are used to analyse the model’s accuracy with predicting energy consumption.The model is trained,and the results measured using Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Absolute Percentage Error(MAPE),and coefficient of determination(R^(2))metrics are 0.020,0.013,0.017,and 0.999,respectively.The stacked LSTM snapshot ensemble performs better than the compared models based on prediction accuracy and minimized errors.The results of this study show that prediction accuracy is high,and the model’s stability is high as well.The model shows that high levels of accuracy prove accurate predictive ability,and together with high levels of stability,the model has good interpretability,which is not typically accounted for in models.However,this study shows that it can be inferred.
Mona Ahamd AlghamdiAbdullah S.A.L-Malaise AL-GhamdiMahmoud Ragab
关键词:PREDICTION
Towards complex scenes: A deep learning-based camouflaged people detection method for snapshot multispectral images
2024年
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
Shu WangDawei ZengYixuan XuGonghan YangFeng HuangLiqiong Chen
In-situ real-time monitoring of ultrafast laser processing using wide-field high-resolution snapshot compressive microscopy
2024年
Over the last few decades,ultrafast laser processing has become a widely used tool for manufacturing microstructures and nanostructures.The real-time monitoring of laser material processing provides opportunities to inspect processes and provide feedback.To date,in-situ and real-time monitoring of laser material processing has rarely been performed.To this end,we propose dual-path snapshot compressive microscopy(DP-SCM)for high-speed,large field-of-view,and high-resolution imaging for in-situ and real-time ultrafast laser processing.In the evaluation of DP-SCM,the field of view,lateral resolution,and imaging speed were measured to be 2 mm,775 nm,and 500 fps,respectively.In ultrafast laser processing,the laser scanning process is observed using a DP-SCM system when translating the sample stage and scanning the focused femtosecond laser.Finally,we monitored the development of a self-organized nanograting structure to validate the potential of our system for unveiling new material mechanisms.The proposed method serves as an add-up(plug-and-play)module for any imaging setup and has vast potential for opening new avenues for high-throughput imaging in laser material processing.
Xiaodong WangMiao CaoZiyang ChenJiao GengTing LuoYufei DouXing LiuLiping ShiXin Yuan

相关作者

赵薇薇
作品数:47被引量:4H指数:1
供职机构:广州金域医学检验中心有限公司
研究主题:引物 特异性检测 生物检测 多态性 试剂盒
胡昌明
作品数:55被引量:9H指数:2
供职机构:广州金域医学检验中心有限公司
研究主题:引物 试剂盒 位点 外显子 多态性
燕启江
作品数:102被引量:0H指数:0
供职机构:广州金域医学检验中心有限公司
研究主题:生物检测 血红细胞 全血 通量 红细胞
郭周萍
作品数:47被引量:0H指数:0
供职机构:广州金域医学检验中心有限公司
研究主题:血红细胞 全血 通量 生物检测 红细胞
李海波
作品数:88被引量:188H指数:7
供职机构:苏州市立医院
研究主题:产前检测 染色体非整倍体 核型分析 非整倍体 染色体