Video snapshot compressive imaging(Video SCI) modulates scenes using various encoding masks and captures compressed measurements with a low-speed camera during a single exposure. Subsequently, reconstruction algorithms restore image sequences of dynamic scenes, offering advantages such as reduced bandwidth and storage space requirements. The temporal correlation in video data is crucial for Video SCI, as it leverages the temporal relationships among frames to enhance the efficiency and quality of reconstruction algorithms, particularly for fast-moving objects.This paper discretizes video frames to create image datasets with the same data volume but differing temporal correlations. We utilized the state-of-the-art(SOTA) reconstruction framework, EfficientSCI++, to train various compressed reconstruction models with these differing temporal correlations. Evaluating the reconstruction results from these models, our simulation experiments confirm that a reduction in temporal correlation leads to decreased reconstruction accuracy. Additionally, we simulated the reconstruction outcomes of datasets devoid of temporal correlation, illustrating that models trained on non-temporal data affect the temporal feature extraction capabilities of transformers, resulting in negligible impacts on the evaluation of reconstruction results for non-temporal correlation test datasets.
New measurements combine spatial and temporal information from optical transition radiation to estimate the three-dimensional structure of electron bunches from a laser wakefield accelerator.
The ability to make accurate energy predictions while considering all related energy factors allows production plants,regulatory bodies,and governments to meet energy demand and assess the effects of energy-saving initiatives.When energy consumption falls within normal parameters,it will be possible to use the developed model to predict energy consumption and develop improvements and mitigating measures for energy consumption.The objective of this model is to accurately predict energy consumption without data limitations and provide results that are easily interpretable.The proposed model is an implementation of the stacked Long Short-Term Memory(LSTM)snapshot ensemble combined with the Fast Fourier Transform(FFT)and meta-learner.Hebrail and Berard’s Individual Household Electric-Power Consumption(IHEPC)dataset incorporated with weather data are used to analyse the model’s accuracy with predicting energy consumption.The model is trained,and the results measured using Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Absolute Percentage Error(MAPE),and coefficient of determination(R^(2))metrics are 0.020,0.013,0.017,and 0.999,respectively.The stacked LSTM snapshot ensemble performs better than the compared models based on prediction accuracy and minimized errors.The results of this study show that prediction accuracy is high,and the model’s stability is high as well.The model shows that high levels of accuracy prove accurate predictive ability,and together with high levels of stability,the model has good interpretability,which is not typically accounted for in models.However,this study shows that it can be inferred.
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
Shu WangDawei ZengYixuan XuGonghan YangFeng HuangLiqiong Chen
Over the last few decades,ultrafast laser processing has become a widely used tool for manufacturing microstructures and nanostructures.The real-time monitoring of laser material processing provides opportunities to inspect processes and provide feedback.To date,in-situ and real-time monitoring of laser material processing has rarely been performed.To this end,we propose dual-path snapshot compressive microscopy(DP-SCM)for high-speed,large field-of-view,and high-resolution imaging for in-situ and real-time ultrafast laser processing.In the evaluation of DP-SCM,the field of view,lateral resolution,and imaging speed were measured to be 2 mm,775 nm,and 500 fps,respectively.In ultrafast laser processing,the laser scanning process is observed using a DP-SCM system when translating the sample stage and scanning the focused femtosecond laser.Finally,we monitored the development of a self-organized nanograting structure to validate the potential of our system for unveiling new material mechanisms.The proposed method serves as an add-up(plug-and-play)module for any imaging setup and has vast potential for opening new avenues for high-throughput imaging in laser material processing.