In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.
In order to expand the color-change range and make the discoloration temperature suitable for the daily textiles,a new formulation of mixed-colorants thermochromic core material is designed,in which crystal violet lactone(CVL)is the basic color former,bisphenol A(BPA)is the developer,especially the solvent-based dye and dodecyl dedecanoate are used as the extended dye and the solvent,respectively.Scanning electron microscope(SEM),differential scanning calorimeter(DSC)and thermogravimetric analyzer(TGA)were applied to study the morphology,encapsulation rate,non-isothermal crystallization behavior and thermal stability of the mixed-colorant thermochromic microcapsules(MCTMs)prepared by in-situ polymerization.The results show that MCTMs have good sphericity,uniform particle size,good thermal stability and the encapsulation rate can reach 86.73%.Under the non-isothermal conditions,the encapsulation of formaldehyde-melamine resin wall material can slightly reduce the crystallization rate of the solvent,but does not affect the relative crystallinity,thermal properties and discoloration sensitivity of the core materials.With the variety of ambient temperatures in the range of 20–35℃,the printed cotton fabrics with MCTMs could change color reversibly between different tones with good reliability and durability,and exhibit more gorgeous colors than the common thermochromic materials.
Lan ZhouJingpeng YeQinze CaiGuojin LiuMehran DadgarGuocheng ZhuGuoqing Zhang