脑电信号获取过程中,工频噪声干扰现象往往会使所获取的信息产生多种多形态瞬时结构波形,这种现象影响到DIVA(Directions Into Velocities of Articulators)模型对语音的正常处理.为此,本文提出了一种面向特征提取的脑电信号结构自适应稀疏分解模型,并在此基础上,通过采用匹配追踪算法求解最佳原子、使用过完备原子库中原子表示原始脑电信号等方法,实现了信号去噪的目的,效果好于传统的小波变换去噪方法.仿真实验表明,本文提出的方法提高了DIVA模型语音发音的精度.
DIVA(Directions Into of Articulators)模型是一种为了生成单词、音节或者音素而控制模拟声道运动的自适应神经网络模型,其依赖的输入信号是从人体大脑中采集到的脑电信号。针对汉语神经分析系统研究中非侵入式脑机接口采集到的脑电数据存在的分辨率低、干扰大的问题,文中提出一种基于DIVA模型对脑电信号进行约束处理的方法。首先利用独立分量分析方法剔除原始信号中的噪声,提取有效事件相关电位(Event-Related Potentials,ERP)成分;然后以模拟生成的功能性磁共振成像(functional Magnetic Resonance Imaging,fMRI)数据的激活点的空间信息作为限制条件,对提取出的ERP成分进行精确定位。通过对实验数据进行分析处理并模拟受试者的激活脑区,验证了所提方法的正确性和有效性。