李强
- 作品数:4 被引量:17H指数:3
- 供职机构:西北工业大学软件与微电子学院更多>>
- 发文基金:国家自然科学基金国家高技术研究发展计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 原始RFID数据流上复杂事件处理研究被引量:4
- 2012年
- 一般的RFID复杂事件检测是建立在经过数据清洗的数据模型上,但RFID数据清洗往往代价较高且目的单一,更为影响效率的是其数据清洗步骤和复杂事件处理步骤需要扫描数据流两次。针对这些问题,提出直接在原始RFID数据流上进行复杂事件处理,将数据清洗步骤与复杂事件处理步骤相结合的方法,并设计出了集成此方法的复杂事件处理引擎架构,最后编程实现了上述架构的处理引擎。通过大量对比实验分析验证了该方法的正确性与高效性。
- 李强陈琳
- 关键词:无线射频识别技术复杂事件处理数据清洗数据流
- RFID数据流上多目标复杂事件检测被引量:3
- 2012年
- 已有的RFID复杂事件处理技术主要关注于单个RFID对象的复杂事件检测和优化技术.实际上,很多RFID应用中往往需要同时检测多个同类型关联目标的复杂事件序列.研究了多个关联的RFID对象的复杂事件处理问题.通过扩展的事件语言和算子的语义以支持同类型多个RFID目标复杂事件查询的定义.通过模式的变换规则,将RFID应用中存在的各种非线性多目标复杂事件模式转换成线性模式,以便各种多目标模式在一个统一的框架下检测.提出了基于自动机NFAb2的多目标复杂事件检测模型和多目标复杂事件检测算法.通过在多目标检测算法中使用关键节点下压和同位置约束置后优化策略,大大减少了单个类型上无用实例的数目和不同类型间模式匹配的搜索空间.与SASE算法的实验比较表明算法的正确性和高效性.
- 彭商濂李战怀李强陈群刘海龙
- 关键词:射频识别复杂事件检测多目标
- 在线-离线数据流上复杂事件检测被引量:10
- 2012年
- 随着数据采集和处理技术的发展,在物联网对象跟踪、网络监控、金融预测、电信消费模式等领域中进行事件检测显得越发重要.事件检测在一次扫描数据流的假设下完成,数据流在被处理完后丢弃.事实上,很多应用场景中,历史数据流因含有丰富的信息而不能简单丢弃,且一些事件检测查询需要同时在实时和历史数据流上进行.鉴于已有复杂事件检测很少考虑同时在实时-历史数据流上进行模式匹配,作者研究了在线-离线数据流上复杂事件检测的关键问题.主要工作如下:(1)针对滑动窗口内产生的大量模式匹配中间结果,提出利用时态关系和时空关系管理中间结果的方法 TPM和STPM.STPM以中间结果的时态和状态信息为权值对中间结果进行管理,将最近的、最有可能更新状态的中间结果置于内存,极大地减少了中间结果的读取操作代价.(2)给出了基于选择度的在线-离线复杂事件检测优化算法;(3)给出了算法的复杂性分析和代价模型;(4)在基于时空关系的中间结果管理模型下,在一个在线-离线复杂事件检测原型系统中进行实验,对多个参数(子窗口大小,选择度,匹配率,命中率)进行了算法对比分析.实验结果充分验证了所提出的算法的可行性和高效性.
- 彭商濂李战怀陈群李强
- 关键词:物联网复杂事件检测数据流RFID无线传感器网络
- 大规模图挖掘算法并行化研究
- 2012年
- 目前大规模图挖掘算法的思路是基于MapReduce将矩阵与向量相乘的过程并行化,但却没有针对MapReduce特点对图数据进行划分,会产生大量中间结果,算法代价较高。针对这些问题,提出了GIM-V LI算法。该算法采用数据划分思想,将图矩阵横向划分,结合MapReduce特点以行为单位替代点或块的数据组织方式,并设计出结构,使一个单位数据仅产生一个中间结果,从而大大减少了中间结果,提高了算法的性能。通过大量实验分析验证了该改进算法的正确性与有效性。
- 陈琳赵政文李强
- 关键词:数据划分MAPREDUCE