目的哈希检索旨在将海量数据空间中的高维数据映射为紧凑的二进制哈希码,并通过位运算和异或运算快速计算任意两个二进制哈希码之间的汉明距离,从而能够在保持相似性的条件下,有效实现对大数据保持相似性的检索。但是,遥感影像数据除了具有影像特征之外,还具有丰富的语义信息,传统哈希提取影像特征并生成哈希码的方法不能有效利用遥感影像包含的语义信息,从而限制了遥感影像检索的精度。针对遥感影像中的语义信息,提出了一种基于深度语义哈希的遥感影像检索方法。方法首先在具有多语义标签的遥感影像数据训练集的基础上,利用两个不同配置参数的深度卷积网络分别提取遥感影像的影像特征和语义特征,然后利用后向传播算法针对提取的两类特征学习出深度网络中的各项参数并生成遥感影像的二进制哈希码。生成的二进制哈希码之间能够有效保持原始高维遥感影像的相似性。结果在高分二号与谷歌地球遥感影像数据集、CIFAR-10数据集及FLICKR-25K数据集上进行实验,并与多种方法进行比较和分析。当编码位数为64时,相对于DPSH(deep supervised Hashing with pairwise labels)方法,在高分二号与谷歌地球遥感影像数据集、CIFAR-10数据集、FLICKR-25K数据集上,m AP(mean average precision)指标分别提高了约2%、6%~7%、0. 6%。结论本文提出的端对端的深度学习框架,对于带有一个或多个语义标签的遥感影像,能够利用语义特征有效提高对数据集的检索性能。
针对探地雷达应用于地雷探测时的强杂波干扰问题,提出一种基于低秩稀疏分解的杂波抑制方法。该方法将加权核范数(weighted nuclear norm,WNN)引入稳健主成分分析(robust principle component analysis,RPCA)方法,结合随机奇异值分解(randomized singular value decomposition,RSVD)与交替方向乘子(alternating direction method of multipliers,ADMM)法来求解表征杂波的低秩矩阵及表征目标的稀疏成分,提高了算法的精度与效率。从实验结果来看,所提方法能够有效改善成像结果的信杂比,且运算效率优于RPCA方法5倍以上,表明该方法能精确划分目标与杂波,有效实现杂波抑制。