激光雷达(light detection and ranging,LiDAR)同时定位与建图(simultaneous localization and mapping,SLAM)中的位姿估计依赖于高精度和高可靠性的扫描匹配算法。针对实时LiDAR里程计与建图(LiDAR odometry and mapping in real-time,LOAM)框架中的点到线和点到面的迭代最近点算法(iterative closest point,ICP)在非结构化场景中退化的问题,提出了用于识别非结构化场景的环境特征值(environmental feature values,EFV),并根据EFV弹性地选择用正态分布变换(normal distributions transform,NDT)进行粗配准,实现了一种基于扫描匹配的弹性实时激光SLAM算法NDT-LOAM。实验结果表明,EFV可以有效区分非结构化场景,并给出了EFV阈值的调试方法。定位与建图实验分析表明,所提算法相比LOAM等经典的纯激光SLAM算法,在精度以及可靠性上均有较大提升,室外定位精度可从米级提升至分米级,在面对手持数据时也不会建图失败,能够得到全局一致性地图。因此此算法具有很好的环境适应性,丰富和发展了面向复杂环境的SLAM方法。