汪菲菲
- 作品数:5 被引量:29H指数:5
- 供职机构:江南大学物联网工程学院更多>>
- 发文基金:国家自然科学基金江苏省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 多元伪线性回归系统部分耦合多新息随机梯度类辨识方法被引量:10
- 2014年
- 针对多元伪线性滑动平均系统,讨论了多元增广随机梯度算法,为减小算法的计算量,将系统分解为一些子系统,给出了子系统增广随机梯度算法,利用耦合辨识概念和多新息辨识理论,推导了部分耦合(子系统)增广随机梯度算法、部分耦合(子系统)多新息增广随机梯度算法.进一步将提出的方法推广到多元伪线性自回归滑动平均系统,给出了部分耦合(子系统)广义增广随机梯度算法、部分耦合(子系统)多新息广义增广随机梯度算法.文中分析了多元增广随机梯度算法、部分耦合增广随机梯度算法、部分耦合多新息增广随机梯度算法的计算量.
- 丁锋汪菲菲汪学海
- 关键词:递推辨识梯度搜索
- 类多变量输出误差系统的耦合多新息辨识方法被引量:11
- 2014年
- 辅助模型辨识思想、多新息辨识理论、耦合辨识概念是研究复杂多变量系统辨识的新理念和原理.将它们结合起来研究类多变量输出误差系统的辨识问题,提出了多元辅助模型辨识方法、多元辅助模型多新息辨识方法、变递推间隔多元辅助模型多新息辨识方法.为减小算法的计算量和提高参数估计精度,将系统模型分解为一些子辨识模型,应用辅助模型辨识思想、多新息辨识理论、耦合辨识概念,研究和推导了部分耦合辅助模型辨识方法、部分耦合辅助模型多新息辨识方法.讨论了几个典型辨识算法的计算量,给出了参数估计的计算步骤和计算流程图.
- 丁锋汪菲菲汪学海
- 关键词:递推辨识梯度搜索
- 多元系统耦合多新息随机梯度类辨识方法被引量:14
- 2014年
- 针对多元线性回归系统,利用耦合辨识概念和多新息辨识理论,讨论了多元随机梯度算法、多元多新息随机梯度算法,以及变递推间隔多元多新息梯度算法,进一步分解多元系统为一些子系统,给出了耦合子系统随机梯度算法、耦合随机梯度算法、耦合子系统多新息随机梯度算法、耦合多新息随机梯度算法,并将这些方法推广到多元伪线性滑动平均系统和多元伪线性自回归滑动平均系统.文中给出了几个典型耦合随机梯度算法、耦合多新息随机梯度算法的计算步骤和示意图.
- 丁锋汪菲菲
- 关键词:递推辨识梯度搜索
- 多变量方程误差类系统的部分耦合迭代辨识方法被引量:9
- 2014年
- 针对多变量方程误差滑动平均系统,利用最小二乘原理和迭代搜索原理,给出了增广随机梯度辨识方法、递推增广最小二乘辨识方法、梯度迭代辨识方法和最小二乘迭代辨识方法.针对多变量方程误差滑动平均系统和多变量方程误差自回归滑动平均系统,将多变量系统分解为一些子系统,利用耦合辨识概念,讨论了梯度迭代辨识方法、部分耦合(子系统)梯度迭代辨识方法、子系统最小二乘迭代方法和部分耦合子系统最小二乘迭代辨识方法.进一步结合数据滤波技术,研究了多变量方程误差自回归滑动平均系统的子系统梯度迭代辨识方法、部分耦合(子系统)梯度迭代辨识方法、部分耦合子系统最小二乘迭代辨识方法.文中给出了几个典型算法的计算步骤.
- 丁锋汪菲菲汪学海
- 关键词:梯度搜索多变量系统
- 损失数据线性参数系统的递推最小二乘辨识方法被引量:12
- 2016年
- 针对损失数据线性参数系统的参数辨识问题,借助辅助模型辨识思想推导出其变递推间隔辅助模型递推最小二乘算法.为了提高该算法的计算效率,利用分解技术得到变递推间隔分解递推最小二乘算法估计系统参数.此外,在变递推间隔分解递推最小二乘算法中引入遗忘因子,从而提高参数估计精度和收敛速度.仿真结果表明,所提出的算法能有效估计系统参数.
- 丁锋汪菲菲
- 关键词:参数估计分解技术