您的位置: 专家智库 > >

段琼

作品数:2 被引量:2H指数:1
供职机构:大连理工大学国家示范性软件学院更多>>
发文基金:国家自然科学基金中央高校基本科研业务费专项资金更多>>
相关领域:生物学自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 1篇生物学
  • 1篇自动化与计算...

主题

  • 2篇蛋白
  • 2篇蛋白质
  • 2篇白质
  • 1篇蛋白质鉴定
  • 1篇图模型
  • 1篇图形处理器
  • 1篇谱图
  • 1篇自顶向下
  • 1篇肽段
  • 1篇概率图模型
  • 1篇GPU
  • 1篇处理器
  • 1篇A-T

机构

  • 2篇大连理工大学

作者

  • 2篇何增有
  • 2篇段琼
  • 1篇陈征
  • 1篇王洁
  • 1篇田博
  • 1篇赵璨

传媒

  • 1篇计算机研究与...
  • 1篇智能系统学报

年份

  • 1篇2018
  • 1篇2016
2 条 记 录,以下是 1-2
排序方式:
CUDA-TP:基于GPU的自顶向下完整蛋白质鉴定并行算法被引量:1
2018年
蛋白质及蛋白质翻译后修饰(post-translational modifications,PTMs)的鉴定是蛋白质组学研究的基础,对整个领域的进一步发展有着十分重要的意义.近年来,质谱设备的快速发展使得获取"自顶向下"(top-down,TD)的高精度完整蛋白质质谱数据成为可能.目前基于TD质谱数据的完整蛋白质鉴定算法虽然在匹配精度、PTM位点的推断上取得了一些成效,但它们运行时间还有很大的不足和提升空间.利用图形处理器(graphics processing unit,GPU)可以将大规模的重复计算并行化,提高串行程序的执行速度.CUDA-TP算法基于通用并行计算架构(compute unified device architecture,CUDA)来计算蛋白质与TD质谱数据的匹配分数.首先,对每一个质谱数据,CUDA-TP利用优化的MS-Filter算法在蛋白质数据库中过滤出其对应的少数候选蛋白质集合,然后通过AVL(adelson-velskii and landis)树加速质谱匹配过程.GPU中的多线程技术被用来并行化谱图网格及最终数组中所有元素的前驱结点的求解.同时,该算法还使用target-decoy策略来控制蛋白质与质谱图匹配结果的错误发现率(false discovery rate,FDR).实验结果表明:CUDA-TP算法能够有效地加速完整蛋白质的鉴定,速度分别比MS-TopDown和MS-Align+快10倍与2倍.到目前为止,这是唯一能够利用CUDA架构来加速完整蛋白质鉴定的研究工作.CUDA-TP源代码公布在https://github.com/dqiong/CUDA-TP.
段琼田博陈征王洁何增有
关键词:蛋白质鉴定图形处理器
基于概率图模型的蛋白质推断算法被引量:1
2016年
蛋白质组学是研究细胞内表达的所有的蛋白质及其变化规律的一门新兴学科。蛋白质组学的一个重要目标是能够快速准确的进行蛋白质鉴定。蛋白质鉴定主要包括肽段鉴定和蛋白质推断两个步骤。肽段鉴定是从原始质谱数据中鉴定出肽段序列,而蛋白质推断是从这些鉴定得到的肽段中还原出原始的蛋白质序列。但由于质谱数据固有的不确定性和蛋白质组的复杂性,使得解决蛋白质推断问题变得很困难。本文引入串联质谱数据对于蛋白质存在概率的影响,提出了一种基于概率图模型的方法(PGMPi)来解决蛋白质推断问题,将蛋白质推断问题抽象成一个概率图模型的求解问题,通过寻找蛋白质的最大后验概率来推断真实存在的蛋白质集合。该方法不仅能够进行有效的蛋白质推断,而且模型参数少,提高了算法的稳定性。实验结果表明该模型在蛋白质推断上具有很好的表现。
赵璨段琼何增有
关键词:概率图模型
共1页<1>
聚类工具0