彭振
- 作品数:2 被引量:4H指数:1
- 供职机构:中国航天员科研训练中心更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:医药卫生更多>>
- 基于奇异值第一主成分的睡眠脑电分期方法研究被引量:3
- 2014年
- 目的:脑电信号含多种噪声和伪迹,信噪比较低,特征提取前必须进行复杂的预处理,严重影响睡眠分期的速度。鉴于此,本文提出一种基于奇异值第一主成分的睡眠脑电分期方法,该方法抗噪性能较强,可省去预处理过程,减少计算量,提高睡眠分期的效率。方法:对未经过预处理的睡眠脑电进行奇异系统分析,研究奇异谱曲线,提取奇异值第一主成分,探索其随睡眠状态变化的规律。并通过支持向量机利用奇异值第一主成分对睡眠分期。结果:奇异值第一主成分不仅能表征脑电信号主体,而且可以抑制噪声、降低维数。随着睡眠的深入,奇异值第一主成分的值逐渐增大,但在REM期处于S1期和S2期之间。经MIT-BIH睡眠数据库中5例同导联位置的脑电数据测试(仅1导脑电数据),睡眠脑电分期的准确率达到86.4%。结论:在未对脑电信号进行预处理的情况下,提取的睡眠脑电的奇异值第一主成分能有效表征睡眠状态,是一种有效的睡眠分期依据。本文运用提出的方法仅采用1导脑电数据,就能得到较为满意的睡眠分期结果。该方法有较强的分类性能,且抗噪能力强,不需要对脑电作复杂的预处理,计算量小,方法简单,很大程度上提高了睡眠分期的效率。
- 彭振韦明郭建平肖蒙王迎雪
- 关键词:脑电睡眠分期抗噪
- 基于小波奇异点检测和阈值去噪的眨眼伪迹去除方法被引量:1
- 2015年
- 目的眨眼伪迹是脑电中一种常见且影响严重的伪迹。本论文提出一种基于小波奇异点检测和阈值去噪的眨眼伪迹去除方法,无需眼电参考信号,做到自动去除单导脑电信号中的眨眼伪迹。方法首先利用小波奇异点检测特性以检测眨眼伪迹的峰值位置,然后只对眨眼伪迹区域进行小波阈值去噪。结果实验结果表明,本方法能够有效检测眨眼伪迹,避免了普通方法去噪时对非眨眼区域的影响。结论本方法使用的阈值和阈值函数优于典型的阈值和软、硬阈值函数,有效地去除了脑电中的眨眼伪迹。
- 牟锴钰韦明杨辉彭振
- 关键词:小波变换奇异点检测阈值去噪