窦刚
- 作品数:2 被引量:17H指数:2
- 供职机构:东北林业大学信息与计算机工程学院更多>>
- 发文基金:教育部“新世纪优秀人才支持计划”中央高校基本科研业务费专项资金中国博士后科学基金更多>>
- 相关领域:理学机械工程更多>>
- 基于近红外光谱反射率特征的木材树种分类识别系统的研究与实现被引量:8
- 2016年
- 提出了一种基于木材表面光谱反射率的新型木材树种分类识别系统,它解决了下面三个问题。首先,考虑到实际采集的光谱反射率曲线在某些波长噪声较大,这些波长应该被删除。另外,木材光谱反射率曲线波段为350~2 500 nm,原始实验数据为一个2 150维的向量(光谱采样间隔设定为1 nm),所以要对光谱数据进行特征选择和降维处理。为高效和同时地解决这两个问题,使用了一种散步矩阵求解特征值方法进行了光谱特征波长的特征选择,同时还对噪声波长进行了滤波处理。该方法收到了较好的效果,具有一定的新颖性。最后,为了使光谱仪采集到的光谱反射率曲线具有最佳的模式可分性信息,还对室内照明光源的安装高度进行了最优化设计,使用遗传算法求解出光源的最佳安装高度,使得采集的光谱反射率曲线具有最佳的树种分类信息。因此,提出的这种照明光源安装高度优化设计方法,在一定程度上提高了树种分类识别的精度,它具有较好的可行性和一定的新颖性。针对东北地区常见的五种树种(白松、樟子松、落叶松、杨木和桦木)木材进行大量的(约10万次)分类测试,实验结果表明五种树种木材的混合识别率达到了95%以上,具有较好的分类识别精度和速度。特征选择的波长主要集中在近红外波段。
- 窦刚陈广胜赵鹏
- 关键词:近红外光谱分析遗传算法
- 采用颜色纹理及光谱特征的木材树种分类识别被引量:9
- 2015年
- 针对木材分类特征的繁多,同科属木材种间差异小,单纯依靠一种特征分类易误识等特点,提出了一种基于模糊BP综合神经网络的新型木材树种分类识别方法.该方法使用分类特征的模糊化处理,充分考虑木材的分类特征本身存在的不确定性;同时使用一种特征级数据融合方法,该综合神经网络包括颜色特征、主要和次要纹理特征和光谱特征4个BP子网络;并用散度进行光谱特征波段的特征选择,还运用遗传算法对网络结构进行优化处理,提高了该综合神经网络的收敛性和稳定性.实验时针对东北地区常见的5种树种(白松、樟子松、落叶松、杨木和桦木)木材进行分类测试,实验结果表明,5种树种木材的混合识别率达到89%,具有较好的分类识别精度.
- 窦刚陈广胜赵鹏
- 关键词:模式识别数据融合光谱分析