杨宁
- 作品数:1 被引量:4H指数:1
- 供职机构:南方医科大学生物医学工程学院更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:医药卫生更多>>
- 基于张量法的阿尔兹海默症脑图像分类被引量:4
- 2017年
- 为了识别阿尔兹海默症(Alzheimer's Disease,AD)与轻度认知障碍(Mild Cognitive Impairment,MCI)患者,提出了一种基于三阶张量方法的以MRI图像脑灰质灰度为特征的分类方法。采集了70例AD患者,112例MCI患者(包含在随访中转化为AD的,MCI-C:MCI Converters与未转化为AD的,MCI-NC:MCI Non-converters各56例),以及70例正常人(NC)的MRI脑图像,提取脑灰质各体素的灰度,获得三阶灰度张量。采用基于张量的独立成分分析,以取得三阶灰度张量的独立成分;为了降低特征维数,利用支持张量机,将张量特征转化为向量特征,再利用递归特征消除法获取有效的主要特征。最后,对四组人群进行分类:AD-NC,MCINC,AD-MCI,MCI-C-MCI-NC,此分类模型采用7折交叉验证的方法进行训练测试。此外,还结合样本的基本信息与认知分数进行分类,证明了基本信息、认知分数和脑灰质灰度提供了互补的信息,有助于提升分类效果。结果表明,该方法拥有优良的分类性能,有助于对AD与MCI的诊断治疗。
- 杨宁徐盼盼刘佩嘉李淑龙
- 关键词:阿尔兹海默症轻度认知障碍