孟琳
- 作品数:1 被引量:16H指数:1
- 供职机构:北京邮电大学计算机学院智能通信软件与多媒体北京市重点实验室更多>>
- 发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
- 相关领域:自动化与计算机技术更多>>
- 基于迁移学习的唐诗宋词情感分析被引量:16
- 2016年
- 随着计算社会学的兴起,利用数据挖掘分析社会情感是近期的研究重点.当前的研究主要针对现代文本,对于古代诗歌这类短文本的情感分析相对较少.本文提出了一个基于短文本特征扩展的迁移学习模型CATLPCO,通过分析诗歌情感对当时社会及文化进行进一步了解.该模型首先基于频繁词对对古文特征向量进行扩展,再通过迁移学习方式,建立三个分类器并投票得出最后的情感分析结果.CATL-PCO模型首先能够解决古文短文本特征稀疏的问题,在此基础上进一步解决由于现代译文信息匮乏所导致的古代诗歌情感分析困难问题,从而准确的分析古诗词情感倾向,从计算社会学的角度,增进对中国历史的认识.实验表明,当训练集为中国唐诗时,本文提出方法能够准确的对唐代诗歌进行情感分类,并能应用于唐代和宋代各个时期情感分析及代表流派分析.
- 吴斌吉佳孟琳石川赵惠东李仪清
- 关键词:情感分析唐诗宋词