杨红红
- 作品数:7 被引量:55H指数:5
- 供职机构:西北工业大学自动化学院更多>>
- 发文基金:中国航空科学基金航天科技创新基金国家教育部博士点基金更多>>
- 相关领域:自动化与计算机技术交通运输工程更多>>
- 基于稀疏约束深度学习的交通目标跟踪被引量:7
- 2016年
- 针对车辆视觉跟踪过程中普遍存在背景复杂、光线变化、尺度旋转等干扰,而现有跟踪算法抗扰动能力差、鲁棒性低的问题,构造了一种基于稀疏约束及深度学习的车辆目标跟踪算法,采用去噪自编码神经网络对包含正负样本的训练集进行特征提取。在正向传播过程中对隐层进行稀疏约束,反向传播微调阶段,对连接矩阵进行权值衰减的稀疏调整,增加神经网络的鲁棒性,实现神经网络不同隐层特征的高效提取,将网络的输出作为Logistics分类器的输入,学习获得车辆分类器,并采用粒子滤波在线跟踪目标。试验结果表明:对连接矩阵和隐层进行稀疏约束的去噪自编码神经网络具有较高的跟踪精度和较强的跟踪鲁棒性,在场景光照剧烈变化、车辆发生遮挡、三维旋转、尺度变化及快速移动时都能进行较好的跟踪,平均中心位置误差远小于对比方法,仅为2.3像素;而增量式学习(IVT)跟踪、在线自适应增强(OAB)跟踪、多示例学习(MIL)跟踪算法的平均中心位置误差分别为17.52像素、28.76像素和17.66像素;该方法的平均重叠率达83%,较IVT跟踪、MIL跟踪和OAB跟踪算法分别提高24.5%、42.2%、28.8%,满足智能交通监控的实际需求。
- 杨红红曲仕茹
- 关键词:交通工程智能交通目标跟踪
- 基于权值分配及多特征表示的在线多示例学习跟踪被引量:2
- 2016年
- 针对复杂环境下目标跟踪过程中由于遮挡、目标姿势及光照条件变化引起跟踪漂移的问题,提出一种基于多示例学习(MIL)框架的在线视觉目标跟踪算法。该算法针对多示例跟踪算法采用单一haar-like特征不能准确描述目标外观变化及在学习过程中对样本包中各正负样本示例采用相同权值,忽略不同正负样本示例在学习过程中对包的重要性不同的特点,采用多特征联合表示目标外观构造分类器,通过将多特征互补特性融入在线多示例学习过程中,利用多特征的互补属性建立准确的目标外观模型,克服在线多示例跟踪算法对目标外观变化描述不足的问题;同时,依据不同正负样本示例对样本包的重要程度进行权值分配,提高跟踪精度。实验结果表明,本文跟踪算法对场景光线剧烈变化、遮挡、尺度变化及平面旋转等干扰具有较强的跟踪鲁棒性,通过对不同视频序列进行测试,文中算法在5组测试视频序列上的平均中心位置误差远小于对比增量式学习跟踪,仅为10.14像素,其对比算法IVT、MIL和OAB的中心位置误差分别为17.99、20.29和33.64像素。
- 杨红红曲仕茹米秀秀
- 关键词:多示例学习权值分配目标跟踪分类器
- 采用Kalman_BP神经网络的视频序列多目标检测与跟踪被引量:6
- 2013年
- 针对在复杂环境下多目标检测与跟踪实时性差和准确率低的问题,提出了一种基于神经网络修正均方误差估计的卡尔曼滤波跟踪方法,实现视频序列的多目标跟踪。在该方法中,首先通过帧间差分法准确提取出背景,并结合背景消减法实现多目标的检测,应用形态学滤波对检测结果进行优化;然后利用Kalman_BP神经网络预测滤波器对运动目标的位置进行预测。BP神经网络的引入,主要是降低由于模型变化以及噪声等引起的Kalman滤波器的估计误差,使Kalman滤波器的预测结果更加精准;最后,通过对不同的目标贴上标签,实现目标快速匹配,根据相邻帧间同一目标形心位置以及外接矩形的一致性,建立目标链,实现多目标跟踪。实验结果表明,该算法不仅能够快速稳定地对不同场景中的目标进行跟踪,而且能够统计目标数目和显示目标的运动轨迹,与粒子滤波等方法相比跟踪更加平稳,提高了跟踪的可靠性。
- 曲仕茹杨红红
- 关键词:多目标检测多目标跟踪KALMAN滤波BP神经网络
- 基于遗传算法参数优化的PCNN红外图像分割被引量:26
- 2015年
- 构造一种基于遗传算法参数优化的脉冲耦合神经网络(PCNN)红外图像分割算法。该算法首先利用PCNN的全局耦合性和脉冲同步性对输入图像进行点火处理,根据PCNN的输出结果计算熵作为遗传算法的适应度函数,并利用熵的变化量作为遗传算法的收敛依据,对PCNN模型中影响图像分割的参数进行组合优化,结合PCNN生物视觉特性和遗传算法解空间随机搜索能力来寻找关键参数的最优值。将遗传算法和PCNN进行结合可充分发挥二者优势,将本文方法与最大类间方差法(OTSU)、最大熵直方图分割算法和PCNN分割方法进行对比,通过交叉熵、区域对比度等客观指标对分割后的图像进行定量分析,结果表明无论从主观视觉还是客观指标,本文方法分割效果优于其他对比方法。
- 曲仕茹杨红红
- 关键词:红外图像遗传算法脉冲耦合神经网络参数优化图像分割
- 基于压缩感知尺度自适应的多示例交通目标跟踪算法被引量:5
- 2018年
- 针对大多数跟踪算法对车辆等交通目标在行驶过程中的尺度变化、姿态变化的适应性差及在跟踪过程中使用固定尺度的跟踪框,导致所构造的目标模板包含大量背景信息,引起跟踪漂移甚至丢失的问题,提出一种基于压缩感知理论与超像素目标性度量的尺度自适应多示例交通目标跟踪算法,该算法首先利用压缩感知理论对多示例学习中的特征维数进行降维,减少算法计算的复杂度。其次,采用超像素目标性度量进行局部尺度自适应调整,解决多示例跟踪算法中的尺度适应问题。此外,引入基于目标判别机制的分类器更新,利用连续帧中目标的相似性判断跟踪目标是否存在遮挡或漂移问题。依据目标判别的结果,实现变学习率的分类器参数更新。试验结果表明:该方法具有较高的跟踪精度和良好的跟踪鲁棒性,在车辆目标发生遮挡、尺度变化、三维旋转等情况时均能较好地跟踪目标,通过对不同的交通视频序列进行测试,算法的平均中心位置误差远小于对比算法,仅为3.92像素,其对比算法CT跟踪、MIL跟踪及WMIL跟踪算法的平均位置误差分别为56.96像素、35.36像素及58.54像素,平均重叠率达80.1%,较CT跟踪、MIL跟踪及WMIL跟踪算法分别高44.9%、45.3%和45%,满足智能交通监控的实际需求。
- 杨红红曲仕茹
- 关键词:交通工程智能交通压缩感知尺度自适应
- 基于区域检测与非下采样轮廓波变换的红外与彩色可见光图像融合被引量:3
- 2014年
- 针对灰度图像融合的分辨率低及现有的彩色图像融合方法融合的图像色彩不自然、不符合人的视觉感受的特点,在此提出一种基于Snake模型的区域检测和非下采样轮廓波变换(NSCT)的红外与彩色可见光图像融合的方法。首先对彩色可见光图像进行亮度、色度和饱和度(IHS)颜色空间变换提取亮度分量,并用Snake模型对红外图像的目标区域进行检测;然后对亮度分量和目标替换的红外图像应用NSCT分解,对所得到的高频系数采用像素点"绝对值和取大"、低频系数采用基于"亮度重映射技术"的加权融合规则进行融合;通过对融合系数进行NSCT逆变换获得融合图像的亮度分量,最后运用颜色空间逆变换得到融合图像。实验结果表明,所提出的融合方法既能保持可见光图像的高分辨率和自然色彩,又能准确保留红外图像中检测出的目标信息,获得视觉效果较好、综合指标较优的融合图像。
- 曲仕茹杨红红
- 关键词:SNAKE模型彩色图像融合
- 基于包级空间多示例稀疏表示的图像分类算法被引量:6
- 2017年
- 基于多示例学习框架的图像分类算法以其特有的多义性对象表示能力在图像分类中表现出较好的分类效果。但传统的包级空间多示例学习算法在特征选择过程中存在忽略小目标概念区域且包含大量冗余信息的问题,造成部分训练包信息损失,影响分类性能。为此,基于多示例学习与稀疏编码理论提出1种改进的多示例图像分类算法。该算法首先根据同类样本示例聚为一簇的特性,应用聚类算法构造每类图像的视觉词汇,并利用负包中所有示例都为负的特性,对视觉词汇进行约束,消除冗余信息;依据训练样本示例与视觉词汇的相似度,获得每类训练样本的包特征向量。然后,基于稀疏编码理论,对训练包中的包特征向量进行稀疏编码,获得每1类训练样本的字典矩阵。最后,对待分类样本特征进行稀疏线性组合,预测待分类样本的类别标签。通过对COREL数据集图像进行测试,结果表明,与其他多示例学习算法相比,文中提出的方法能较好地解决图像分类问题,具有较高的分类精度。
- 杨红红曲仕茹金红霞
- 关键词:多示例学习图像分类