为了获取不同农作物的空间分布信息,以华北平原黄河以北地区为研究区域,利用Savitzky-Golay滤波对2014—2016年的时间序列叶面积指数(leaf area index,LAI)进行重构,进而应用一阶差分法和重构LAI的傅里叶变换的谐波特征对研究区域主要农作物冬小麦、玉米和棉花种植区域进行识别和提取,并对不同作物的识别精度进行验证。结果表明,基于Savitzky-Golay滤波重构的LAI能够去除由云、大气等因素造成的LAI骤降的影响,重构LAI曲线平滑且符合作物的生长规律特征。研究区域2014—2016年作物识别的总体精度均大于80.00%,2015年达到87.08%,冬小麦-夏玉米、春玉米、棉花和单季夏玉米的识别精度分别为92.50%、80.00%、85.00%和82.50%,表明利用一阶差分法能够准确提取研究区域一年一季和一年两季作物种植区域。结合傅里叶变换方法和作物物候信息能够有效地识别不同作物的种植区域,进而获取研究区域主要农作物的分布信息。该研究可为研究区域主要作物的长势监测及产量估测预测提供参考。
为了提高玉米单产估测精度,以河北省中部平原为研究区域,以与玉米长势和产量密切相关的条件植被温度指数(vegetation temperature condition index,VTCI)和叶面积指数(leaf area index,LAI)为遥感特征参数,通过投影寻踪法确定玉米主要生育时期 VTCI 和 LAI 的权重,进而构建基于县域尺度加权 VTCI 和 LAI 与玉米单产间的线性回归模型。结果表明,同时构建加权 VTCI 和 LAI 与玉米单产间的回归模型的精度最高,达到极显著水平(P<0.001)。与变异系数法相比,基于投影寻踪法所建双参数回归模型的精度较高,研究区域各县(区)估测单产与实际单产的平均相对误差降低了 0.88 个百分点,均方根误差降低了 50.56 kg/hm2。通过投影寻踪法构建的双参数回归模型对研究区域玉米单产进行估测,结果表明研究区域玉米单产具有西部单产最高、北部和南部次之、东部最低的空间分布特征,以及在研究年份间玉米单产在波动中呈先下降后上升趋势的时间演变特征。
为提高陕西省关中平原冬小麦的估产精度,该文通过粒子滤波算法同化Landsat遥感数据反演的状态量叶面积指数(leaf area index,LAI)、土壤含水量(0~20 cm)、地上干生物量数据和CERES-Wheat模型模拟的状态量数据,分析小麦不同生育期的LAI、土壤含水量及生物量同化值和实测单产的线性相关性,以构建同化估产模型。结果表明,在返青期土壤含水量同化值和实测单产的相关性高于LAI、生物量同化值和实测单产的相关性,选择土壤含水量作为最优变量;在拔节期和抽穗-灌浆期同时选择LAI、土壤含水量及生物量作为最优变量;在乳熟期选择生物量作为最优变量。在小麦各生育时期同化最优变量的估产精度(R2=0.85)高于同时同化LAI、土壤含水量及生物量的估产精度,同时同化LAI、土壤含水量及生物量的估产精度高于同时同化LAI和土壤含水量(或LAI和地上干生物量、或土壤含水量和地上干生物量)的估产精度,表明在作物不同生育时期同化与产量相关性较大的变量对提高估产精度有重要作用。