张永俊
- 作品数:4 被引量:63H指数:2
- 供职机构:中国人民大学信息学院更多>>
- 发文基金:国家自然科学基金北京市自然科学基金教育部人文社会科学研究基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 记忆神经网络的研究与发展被引量:21
- 2017年
- 首先,根据记忆神经网络训练形式的不同,介绍了强监督模型和弱监督模型的结构特征和各自应用场景以及处理方式,总结了两类主要模型的优缺点;随后,对两类模型的发展和应用(包括模型创新和应用创新)进行了简要综述,总结了各类新模型在处理自然语言过程中所起的关键作用;最后梳理了记忆神经网络处理自然语言所面临的复杂性挑战,并预测了记忆神经网络未来的发展方向.
- 梁天新杨小平王良张永俊朱艳丽许翠
- 关键词:自然语言处理人工智能递归神经网络
- 基于全路径相似度的大规模层次分类算法
- 2019年
- 为快速准确地实现大规模层次分类问题,提出词类区分度概念,并以此作为计算类向量的基础。基于类向量,以改进的Rocchio算法计算待分类文本与目标类的相似度,候选出N个最可能的目标类别;根据目标类别的层次拓扑结构,计算待分类文本与N个目标类别的全路径相似度,确定分类类别。实验结果表明,该方法分类效果优于传统算法,其基于文本类全路径相似度的策略明显改善了单纯基于词类区分度的分类算法。
- 朱建林陈忠阳张永俊孙存一
- 关键词:文本分类
- 基于Word2Vec的情感词典自动构建与优化被引量:40
- 2017年
- 情感词典的构建是文本挖掘领域中重要的基础性工作。近几年,情感词典的极性标注从二元褒贬标注向多元情绪标注发展,词典的领域特性也日趋明显。但是情感类别的手工标注不但费时费力,而且情感强度难以得到准确量化,同时对领域性的过分关注也大大限制了情感词典的适用性[1]。通过神经网络语言模型对大规模中文语料进行统计训练,并在此基础上提出了基于转换约束集的多维情感词典自动构建方法;然后研究了基于词分布密度的感情色彩消歧方法,对兼具褒贬意味词语的感情极性进行区分和识别,并分别计算两种感情色彩下的情感类别与强度;最后提出基于多个语义资源的全局优化方案,得到包含10种情绪标注的多维汉语情感词典SentiRuc。实验证实该词典1)在类别标注检验、强度标注检验、情感消歧效果及情感分类任务中均具有良好的效果,其中的情感强度检验证实该词典具有极强的情感语义描述力。
- 杨小平张中夏王良张永俊马奇凤吴佳楠张悦
- 关键词:情感分析
- 基于异构信息网络的分类算法被引量:2
- 2019年
- 为实现异构信息网络中所有结构节点的分类,以GNetMine和HetPathMine为基础,提出基于异构信息网络的分类算法HNetMine。识别同构对象(如作者与作者)和异构对象(如作者与论文)之间的关系,为分类某种结构的节点,构建以该结构对象为起点和终点的多条同构关系元路径,通过逻辑回归整合这些元路径为同构关系方阵,根据这种结构节点的分类标准,实现该结构节点的分类。其它结构的节点依此方法,即可一次性地完成所有信息网络节点的分类。实验结果表明,HNetMine算法能够自动识别同构关系元路径,根据不同分类标准一次性地分类所有节点,在分类效果上优于已有算法。
- 朱建林陈忠阳李振张永俊梁天新
- 关键词:知识传播