孙锦强
- 作品数:1 被引量:0H指数:0
- 供职机构:西安交通大学电子与信息工程学院更多>>
- 发文基金:中央高校基本科研业务费专项资金国家自然科学基金更多>>
- 相关领域:电子电信更多>>
- 利用小波系数上下文建模的Bayesian压缩感知重建算法
- 2013年
- 针对目前压缩感知图像重建算法没有充分利用图像小波系数尺度内相关性的缺点,提出一种上下文建模的Bayesian压缩感知重建(CBCS)算法。该算法假定图像的小波系数服从参数未知的spike-and-slab概率模型,先通过一种新的上下文建模方法得到待估计小波系数邻域内的上下文矢量,然后根据待估计系数与上下文矢量的相关性及其父亲系数的状态,推测待估计系数为显著系数的概率,最后根据待估计系数的概率,采用马尔科夫链-蒙特卡洛采样的Bayesian推理从观测向量中恢复出图像的小波系数,进而得到重建图像。实验结果表明,CBCS算法可以自适应于图像内容的变化,与仅利用尺度间相关性的小波树结构的压缩感知重建算法相比,在0.9的采样率下,重构性能最大可提高近2dB。
- 侯兴松孙锦强
- 关键词:上下文建模压缩感知图像重建