提出了一种利用可见-近红外反射光谱技术对婆婆纳、波斯婆婆纳、直立婆婆纳等3种入侵植物和本地杂草宝盖草的植物辨别方法,可以对外表相似度极高的这4种植物进行有效鉴别。研究在对光谱曲线进行预处理和聚类分析后,随机采用30×4个样本作为建模样本,其余的20×4个样本作为预测样本,应用独立软模式法SIMCA(soft independent models of class analogy)进行分类,在显著性水平为5%下,其预测分辨率为78.75%,去除婆婆纳后的预测分辨率为90%。根据变量建模能力(modeling power)值,找到敏感波段496~521,589~626和789~926nm,并将相应的波段的光谱值作为最小二乘的支持向量机LS-SVM(least squares support vector machine)的输入,进行建模预测,并以预测结果作为目标函数值,进行遗传算法GA(genetic algorithm)优化,结果发现,预测分辨率达95.35%,辨识效果好,能快速正确区分外来入侵植物。