基于模块化多电平换流器MMC(modular multilevel converter)的柔性直流输电技术,在高压大容量输电领域有广阔的应用前景。直流故障穿越是MMC应用必须解决的关键问题。目前,具有直流故障穿越能力的MMC改进拓扑在功率器件成本和换流器损耗方面依然偏高,并且缺乏物理实验验证。首先,提出一种基于半压钳位子模块的MMC改进拓扑;然后利用子模块电容电压来主动抑制二极管续流效应,迅速清除故障电流和实现自动重启,并且额外成本很低;最后,相应地搭建了1 k V/20 k W物理样机,通过物理实验详细地研究了所提拓扑的直流故障清除和恢复过程,并验证了该拓扑的直流故障穿越能力。
模块化多电平换流器(modular multilevel converter,MMC)的直流短路故障电流清除能力是柔性直流输电系统在架空线应用场合必须解决的问题。提出了一种集成直流断路器功能的MMC拓扑结构(MMC integrated with DC circuit breaker,IDCB-MMC)。IDCB-MMC在换流器部分采用了带有双向旁路晶闸管的子模块,在直流断路器部分采用快速机械开关和辅助电子开关串联作为主支路。在发生直流短路故障时,通过换流器部分与直流断路器部分控制方式的配合,可以将故障电流的能量转移到并联于直流母线间的能量吸收支路中,从而可以避免使用成本高且占地大的电力电子开关转移支路来分断故障电流。通过对一个1000MW/±320k V的双端柔性直流输电系统中的一极进行仿真研究,验证了IDCB-MMC可以有效清除直流短路故障电流。IDCB-MMC仅需在常规半桥MMC的基础上增加少量电容和开关器件,以及一个快速机械开关,在成本和占地上相对常规混合直流断路器方案有很大优势。IDCB-MMC在损耗方面也远小于各类具有直流故障阻断能力的改进型MMC拓扑结构。
为了解决现有电网换相换流器(LCC)与模块化多电平换流器(MMC)组成的混合高压直流(HVDC)输电系统采用半桥MMC时不具有直流侧故障清除能力、采用全桥MMC时成本过高的问题,提出了一种使用新型的电流单向型MMC与LCC连接构成的混合直流输电系统。构建了单极800 k V/2 500 MW的双端系统模型,对其启动过程、典型故障过程和功率反转过程进行了仿真,结果表明提出的混合系统具有可行性、直流故障清除能力、短时无功支撑能力和双向功率传输能力。