郭刚
- 作品数:4 被引量:34H指数:4
- 供职机构:新疆大学软件学院更多>>
- 发文基金:国家自然科学基金博士科研启动基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 温度感知的MapReduce节能任务调度策略被引量:8
- 2016年
- 现有的FIFO、Fair、Capacity、LATE及Deadline Constraint等Map Reduce任务调度器的主要区别在于队列与作业选择策略的不同,而任务选择策略基本相同,都是将数据的本地性(data-locality)作为选择的主要因素,忽略了对Task Tracker当前温度状态的考虑。实验表明,当Task Tracker处于高温状态时,一方面使CPU利用率变高,导致节点能耗增大,任务处理速度下降,导致任务完成时间增加;另一方面,易发的宕机现象将直接导致任务的失败,推测执行(speculative execution)机制容易使运行时任务被迫中止。继而提出温度感知的节能任务调度策略,将节点CPU温度纳入任务调度的决策信息,以避免少数高温任务执行节点对作业整体进度的影响。实验结果表明,算法能够避免任务分配到高温节点,从而有效地缩短作业完成时间,减小作业执行能耗,提高系统稳定性。
- 廖彬张陶于炯刘继尹路通郭刚
- 关键词:MAPREDUCE任务调度温度感知
- 内存云分级存储架构下的数据迁移模型被引量:13
- 2015年
- 为了实现在线海量数据的高效存储与访问,在内存云分级存储架构下,提出一种基于数据重要性的迁移模型(MMDS)。首先,通过数据本身的大小、时间重要性、用户访问总量等因素对数据本身的重要性进行计算;其次,采用推荐系统中相似用户和PageRank算法中的重要性排名思想对数据的潜在价值进行评估,数据重要性和潜在价值共同决定了数据的重要程度;然后基于数据的重要性,设计了数据迁移机制。实验结果表明:该模型能够识别出数据的重要程度并分级放置数据,相比最近最少使用(LRU)、最近最不常用(LFU)、基于价值评估的数据迁移(MSDV)等算法,提高了存储系统的数据访问命中率。该模型能够缓解部分存储压力,数据访问性能也有了一定的提高。
- 郭刚于炯鲁亮英昌甜尹路通
- 关键词:数据迁移
- 融合评论分析和隐语义模型的视频推荐算法被引量:6
- 2015年
- 针对网络视频元数据信息缺失严重和多媒体数据本身特征难以提取等问题,提出了融合评论分析和隐语义模型的网络视频推荐算法。从视频评论入手,通过分析用户对不同视频的评论内容以判断其情感倾向并加以量化,继而构建用户对项目的虚拟评分矩阵,弥补了显式评分数据稀疏性问题。考虑到网络视频的多元性和高维度特性,为了深度挖掘用户对网络视频的潜在兴趣,针对虚拟评分矩阵采用隐语义模型(LFM)对网络视频分类,在传统的用户—项目二元推荐系统基础之上添加虚拟类目信息以进一步发掘用户—类目—项目关联关系。实验在多重标准下进行,对You Tube评论集的实验表明,所提推荐方法获得了较高的推荐精度。
- 尹路通于炯鲁亮英昌甜郭刚
- 关键词:推荐系统网络视频
- MapReduce能耗建模及优化分析被引量:11
- 2016年
- 云计算中心规模的不断扩大以及设计时对能耗因素的忽略,使其日益暴露出高能耗低效率的问题.为提高MapReduce框架能耗利用率,首先对MapReduce任务进行了能耗建模,提出基于CPU利用率估算、主要部件能耗累加及平均功耗估算的任务能耗模型,并在此基础上建立了MapReduce作业能耗模型.其次,基于能耗模型对能耗优化进行了分析,提出从优化MapReduce作业执行能耗、减少MapReduce任务等待能耗与提高MapReduce集群能源利用效率3个方向对MapReduce进行能耗优化.再次,提出异构环境下的数据放置策略减小MapReduce任务等待能耗,提出截止时间约束下的最小资源分配方法提高MapReduce作业能耗利用效率.通过大量的实验及能耗数据分析,验证了能耗模型及能耗优化方法的有效性.
- 廖彬张陶于炯尹路通郭刚国冰磊
- 关键词:任务调度能耗建模节能分析