您的位置: 专家智库 > >

郑姗姗

作品数:1 被引量:14H指数:1
供职机构:中国科学院地理科学与资源研究所更多>>
发文基金:国家高技术研究发展计划更多>>
相关领域:天文地球更多>>

文献类型

  • 1篇中文期刊文章

领域

  • 1篇天文地球

主题

  • 1篇暴雨积水

机构

  • 1篇中国科学院
  • 1篇中国科学院大...

作者

  • 1篇万庆
  • 1篇郑姗姗
  • 1篇贾明元

传媒

  • 1篇地理科学进展

年份

  • 1篇2014
1 条 记 录,以下是 1-1
排序方式:
基于STARMA模型的城市暴雨积水点积水短时预测被引量:14
2014年
近年来城市暴雨出现突发和多发态势,导致城市内涝灾害频繁发生,威胁着城市居民的生命和财产安全。随着城市降雨积水监测网的建立,获得分钟尺度的降雨和积水时序监测数据成为可能,实现了城市内涝的实时监控。但目前对监测数据的利用仍显不足,缺乏对其深度分析挖掘,造成监测系统"只监不控"的局面。本文基于城市降雨积水监测网的监测数据,根据积水时间相关性、降雨空间相关性以及降雨积水序列相关性,构建降雨积水的时空自相关移动平均模型(STARMA),对城市暴雨积水点积水过程进行短时预测。STARMA模型已被广泛应用于交通预测、环境变量预测以及社会经济领域,特别是在时空过程机理不清楚、多因素时空变量影响的情况下效果较好。本文首次将该模型应用到降水积水过程拟合和积水短时预测上,同时在方法上改进了传统单变量的STARMA模型,建立降雨和积水双变量的STARMA模型模拟降雨积水过程。并以北京市2012年"7.21"事件降雨积水过程为研究对象,以丰北桥、花乡桥、马家楼桥和六里桥4个积水监测点为例,建立降雨积水的STARMA模型,以5 min为步长作积水5、10、15 min三步预测。验证结果表明,该模型在降雨积水过程中拟合效果较好,模型短时预测精度较高。该项研究能够有效地利用监测数据,提高信息预警和应急指挥能力,为市政防汛或交通等部门提供决策支持。
郑姗姗万庆贾明元
关键词:暴雨积水
共1页<1>
聚类工具0