Al86Ni7Y4.5Co1La1.5 (mole fraction, %) alloy powder was produced by argon gas atomization process. After high-energy ball milling, the powder was consolidated by vacuum hot press sintering and spark plasma sintering (SPS) under different process conditions. The microstructure and morphology of the powder and consolidated bulk sample were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is shown that amorphous phase appears when ball milling time is more than 100 h, and the bulk sample consolidated by SPS can maintain amorphous/ nanocrystalline microstructure but has lower relative density. A compressive strength of 650 MPa of Al86Ni7Y4.5Co1La1.5 nanostructured samples is achieved by vacuum hot extrusion (VHE).
Carbon nanotubes (CNTs) reinforced aluminum matrix composites were fabricated by mechanical milling followed by hot extrusion. The commercial Al-2024 alloy with 1% CNTs was milled under various ball milling conditions. Microstructure evolution and mechanical properties of the milled powder and consolidated bulk materials were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and mechanical test. The effect of CNTs concentration and milling time on the microstructure of the CNTs/Al-2024 composites was studied. Based on the structural observation, the formation behavior of nanostructure in ball milled powder was discussed. The results show that the increment in the milling time and ration speed, for a fixed amount of CNTs, causes a reduction of the particle size of powders resulting from MM. The finest particle size was obtained after 15 h of milling. Moreover, the composite had an increase in tensile strength due to the small amount of CNTs addition.