The Senkin code of package is used to simulate the the Chemkin chemical kinetics combustion process of a porous medium(PM) engine fueled by n-heptane. The code is modified to incorporate the Woschni heat transfer correlation and heat transfer model within a porous medium. A detailed chemistry mechanism of NOx formation is coupled with the detailed chemical kinetics mechanism of n-heptane. The code is applied to a zero- dimensional single-zone model of engine combustion. Influences of operating parameters on the performance of the PM engine are discussed. With the increase in the intake temperature and compression ratio, or with the decrease of the excess air ratio, the ignition timing of the PM engine obviously advances. It is found that the porous medium acting as a heat recuperator can considerably preheat the fuel-air mixture, which promotes the ignition and combustion in the cylinder. And the initial PM temperature is a critical factor controlling the compression ignition of the mixture.