The quasiclassical trajectory method is used to study the vector correlations of the reactions Ca+RBr (R=CH3, C2H5 and n-C3H7Br) and the rotational alignment of product CaBr. The product rotational alignment parameters at different collision energies and the vector correlations between the reagent and product are numerically calculated. The vector correlations are described by using the angle distribution functions P(θr), P(φr), P(θr, φr) and the polarization-dependent differential cross sections (PDDCSs). The peak values of P(θr) of the product CaBr from Ca+CH3Br are larger than those from Ca+C2H5Br and Ca+n-C3H7Br. The peak of P(θr) at φr= 3π/2 is apparently stronger than that at φr= x/2 for the three reactions Ca+RBr. The calculation results show that the rotational angular momentum of the product CaBr is not only aligned, but also oriented along the direction which is perpendicular to the scattering plane.The product CaBr molecules are strongly scattered forward. The orientation and alignment of the product angular momentum will affect the scattering direction of the product molecules to varying degrees.
The vibrational state-selected population transfer from a highly vibrationally excited level to the ground level is of great importance in the preparation of ultra-cold molecules. By using the time-dependent quantum-wave-packet method, the population transfer dynamics is investigated theoretically for the HF molecule. A double-E-type laser scheme is proposed to transfer the population from the |v=16〉 level to the ground vibrational level |v=0〉 on the ground electronic state. The scheme consists of two steps: The first step is to transfer the population from |v=16〉 to |v=7〉 via an intermediate level |v=11〉, and the second one is to transfer the population from |v=7〉 to |v=0〉 via |v=3〉. In each step, three vibrational levels form a E-type population transfer path under the action of two temporally overlapped laser pulses. The maximal population-transfer efficiency is obtained by optimizing the laser inten- sities, frequencies, and relative delays. Cases for the pulses in intuitive and counterintuitive sequences are both calculated and compared. It is found that for both cases the population can be efficiently (over 90%) transferred from the |v=-16〉 level to the |v=0〉 level.