吴锋刃
- 作品数:10 被引量:4H指数:1
- 供职机构:杭州外国语学校更多>>
- 相关领域:文化科学理学更多>>
- 高一新生数学学习调查分析及教学建议被引量:2
- 2011年
- 从小学到高中,学生在数学学习中投入了大量的时间与精力,然而高中学生数学学习成绩两极分化呈现出比初中更严重的趋势.学生进入高一后,其数学学习情况到底如何?为此笔者选取了杭州外国语学校、杭州师范大学附属中学和萧山第十一中学进行问卷调查.本次问卷共发放学生问卷400份,回收399份,发放教师问卷50份,回收50份.调查情况分析如下:
- 吴锋刃张传鹏
- 关键词:数学学习高一新生教学建议高中学生问卷调查
- Napoleon定理的一个初等证法
- 2010年
- Napoleon定理(1)在任意一个三角形的三条边上分别向外(内)作出三个等边三角形,则这三个等边三角形的中心构成一个等边三角形,也称做外(内)Napoleon三角形;
- 吴锋刃
- 关键词:初等证法定理
- 关于“勾股定理”教学的案例分析被引量:1
- 2009年
- 众所周知,勾股定理是初中数学中的一个重要内容,具有悠久的历史和丰富的文化内涵.数学教学要培养学生的数学计算、数学论证乃至数学决策等三大能力,而勾股定理的教学正是一个恰当的例子.一直以来,勾股定理的教学倍受关注,有人称“勾股定理是数学教改的晴雨表”.从20世纪五六十年代数学课程中的严格论证,
- 吴锋刃
- 关键词:勾股定理案例分析初中数学文化内涵
- 与内切圆有关的问题的一种证法
- 2003年
- 若☉I为△ABC的内切圆,则可令AB=x+z,BC=x+y,AC=y+z,这一代换几何意义明显,也是(?)一种数形转换的重要工具,在代数不等式证明中已经有广泛运用;在平面几何有关内切圆的问题的证明中,若能合理运用,可将几何证明变得非常简捷。下举例说明。
- 吴锋刃
- 关键词:内切圆数学竞赛题几何证明题
- 浅谈数学课堂教学中的问题意识培养被引量:1
- 2007年
- 数学问题意识是指人们在进行数学的认识活动中,活动主体对既有的知识经验和一些难以解决的实际或理论问题所产生的怀疑、困惑、焦虑、探究等的心理状态,并在其驱动下,不断提出问题、解决问题.它在数学思维过程乃至整个数学认识活动中占有重要的地位.数学问题意识和问题提出,是对数学“内在理性”的一种突破,指人以质疑索解的态度审视数学这门学科所形成的一种思维方式和文化观念,既是一种叛逆思维习惯,也是一种洞见古今的批判精神。
- 吴锋刃
- 关键词:数学课堂教学问题意识培养数学思维过程知识经验心理状态
- 二次曲线中的定值(点)问题再探讨
- 2015年
- 众所周知,在圆锥曲线中蕴含着许多几何性质,它们和谐统一,简洁明了,美轮美奂,是激发学生学习兴趣、感受数学美的好素材.在教材和练习中经常出现类似的问题:
- 吴锋刃
- 关键词:定值圆锥曲线数学美
- 一个推广形式的证明
- 2003年
- 数学通讯2002年第17期《圆锥曲线的一个性质》一文对2001年全国初中联赛的平面几何题已加以推广,即对圆锥曲线结论仍成立,并对其中的圆、椭圆用解析法加以证明,但证明比较繁琐,其实,这里可用圆锥曲线方程的一般形式证明之,无须——论证,值得一提的是,这种方法在研究椭圆、双曲线、抛物线共同具有的性质时特别有用,往往能做到“
- 吴锋刃
- 关键词:平面几何题数学教学切线方程
- 一个图形的演变与推广
- 2010年
- 几何图形变幻莫测,一个个精美的结论更是赏心悦目,几何思维独特且具有丰富内涵,分析综合法、定性推导和定量计算使我们感受证法的曲折离奇;一题多解,各种证法层出不穷、千姿百态;类比联想、加深推广,让人体会到硕果累累,美不胜收.本文将从欣赏数学的视角,
- 吴锋刃
- 关键词:几何思维一题多解类比联想几何图
- 几何证明中的恒等变形
- 2008年
- 2008年全国初中数学竞赛(浙江赛区)复赛解答题第14题为:例1如图1,在梯形ABCD中,AD//BC,E为线段AB上的点,且满足AE=AD,BE=BC,过点E作EF∥BC交CD于点F,设P为线段CD上任意一点.
- 吴锋刃
- 关键词:恒等变形全国初中数学竞赛解答题线段CD复赛