在模糊C-均值聚类问题目标函数中使用正则化泛函,将聚类中心解的误差指标引入到模糊聚类的目标函数中,构造出新的模糊C-均值聚类算法RBFCM(Regularization based Fuzzy C-means)算法.算法RBFCM不仅具有较高的聚类精度,且计算结果具有更好的稳定性.进一步,将此RBFCM算法应用于基于T-S模糊模型的系统辨识问题.由于RBFCM算法优化了模糊系统的输入空间划分,提高了隶属度函数的精度,使得后继得到的T-S模糊系统辨识精度也有所提高,且系统辨识过程的收敛速度也有所改善.最后,通过对经典IRIS数据集、带有噪声的IRIS数据集的聚类算例和对Box-Jenkins煤气炉数据集进行辨识算例,验证了RBFCM算法的有效性和优越性.