为建立准确有效的空中交通短期流量预测模型,提高终端区管理效率,以进场交通流为对象进行研究。首先采用自回归移动平均(autoregressive moving average,ARMA)模型对流量时间序列进行初步线性预测,然后通过长短期记忆网络(long short term memory,LSTM)模型对线性预测后的残差序列进行非线性修正预测。考虑到冗余特征会降低LSTM模型预测精度的问题,采用自编码器(autoencoder,AE)模型对LSTM模型的天气以及流量特征输入进行自适应压缩优化,最后设置对比实验对ARMA-AE-LSTM模型的准确性、鲁棒性以及时效性进行验证。实验结果表明:预测绝对误差在1.3架以内的占比达到75%;LSTM模型的平均每轮迭代时间降低为1.014 s;与其他常用深度学习预测模型相比,ARMA-AE-LSTM模型的均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)以及决定系数(r-squared,R2)评价指标分别改善了45.98%~67.66%、48.56%~67.35%、5.18%~21.07%;恶劣天气影响下,ARMA-AE-LSTM模型的鲁棒性更好。由此可见,该方法能够准确有效快速的预测空中交通流量。
本文基于空中交通流运行现象建立交通拥挤传播规则挖掘模型,从数理角度分析并表征终端区交通流拥挤状态的传播现象。首先,对终端区交通流按照航段结构进行划分并给出交通状态评价指标,采用模糊C均值算法对终端区进场交通流状态进行聚类划分;其次,使用OApriori算法挖掘终端区进场交通流拥挤传播规则;最后,基于实测历史数据构建北京终端区全空域及机场模型(TAAM,total airspace and airport modeler)仿真场景,模拟终端区在不同流量分布特征下的运行情况并进行分析,结果表明:本文模型分析所得的传播规律与实际情况相符,并发现优化终端区进场点流量分布能显著减少终端区拥挤状态的传播现象。