The binding energy spectrum and electron momentum distributions for the outer valence orbitals of n-propyl iodide molecule have been measured using the electron momentum spectrometer employing non-coplanar asymmetric geometry at impact energy of 2.5 keV plus binding energy. The ionization bands have been assigned in detail via the high accuracy SACCI general-R method calculation and the experimental momentum profiles are compared with the theoretical ones calculated by Hartree-Fock and B3LYP/aug-cc-pVTZ(C,H)6-311G??(I). The spin-orbit coupling effect and intramolecular orbital interaction have been analyzed for the outermost two bands, which are assigned to the iodine 5p lone pairs, using NBO method and non-relativistic as well as relativistic calculations. It is found that both of the interactions will lead to the observed differences in electron momentum distributions. The experimental results agree with the relativistic theoretical momentum profiles, indicating that the spin-orbit coupling effect dominates in n-propyl iodide molecule.
采用离子动量成像谱仪研究了能量为1.0 ke V的电子束碰撞条件下CF_(4)分子的解离动力学.实验上,对解离离子的三维动量进行了成像测量,通过离子飞行时间关联谱识别了CF_(4)^(2+)异构化生成F_(2)^(+)分子的两个通道:F_(2)^(+)+CF_(2)^(+)与CF^(+)+F_(2)^(+)+F,得到了两个通道的离子动能及动能释放分布.对于其中的三体解离通道,我们进一步采用Dalitz图与Newton图等三体动力学分析方法对解离碎片的动量关联进行了分析.该通道以两个带电离子的背对背出射为主,中性的F原子作为旁观者只得到极小的反冲动量.
The binding energy spectra and electron momentum distributions for the outer valence molecular orbitals of gaseous 2-fluoroethanol have been measured by the non-coplanar asym- metric (e, 2e) spectrometer at impact energy of 2.5 keV plus binding energy. The quantitative calculations of the ionization energies and the relevant molecular orbitals have been carried out by using the outer-valence Green's function method and the density functional theory with B3LYP hybrid functional. The observed ionization bands in binding energy spectra, as well as the previous photoelectron spectrum which was not assigned, have been assigned for the first time through the comparison between experiment and theory. In general, the the- oretical electron momentum distributions calculated by B3LYP method with aug-cc-pVTZ basis set are in line with the experimental ones when taking into account the Boltzmann- weighted thermo-statistical abundances of five conformers of 2-fluoroethanol.