Molecular dynamics simulations with embedded atom method potential were carried out for A1 nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy and specific heat capacity were calculated to estimate the melting temperatures. The melting point is 540+10 K for the icosahedral structure, 500±10 K for the decahedral structure, and 520±10 K for the truncated octahedral structure. With the results of mean square displacement, the bond order parameters and radius of gyration are consistent with the variation of total potential energy and specific heat capacity. The relaxation time and stretching parameters in the Kohlraush-William-Watts relaxation law were obtained by fitting the mean square displacement. The results show that the relationship between the relaxation time and the temperatures is in agreement with standard Arrhenius relation in the high temperature range.
Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental