蔡尚
- 作品数:3 被引量:14H指数:1
- 供职机构:中国科学院更多>>
- 发文基金:国家自然科学基金国家重点基础研究发展计划国家科技支撑计划更多>>
- 相关领域:电子电信更多>>
- 用于噪声鲁棒性语音识别的子带能量规整感知线性预测系数被引量:14
- 2012年
- 为了提高感知线性预测系数(PLP)在噪声环境下的识别性能,使用子带能量偏差减的方法,提出了一种基于子带能量规整的感知线性预测系数(SPNPLP)。PLP有效地集中了语音中的有用信息,在安静环境下自动语音识别系统使用PLP可以取得良好的识别率;但是在噪声环境中其识别性能急剧下降。通过使用能量偏差减的方法对PLP的子带能量进行规整,抑制背景噪声激励,提出了SPNPLP,增强自动语音识别系统在噪声环境下的鲁棒性。在一个语法大小为501的孤立词识别任务和一个大词表连续语音识别任务上做了测试,SPNPLP在这两个任务上,与PLP相比,汉字识别精度分别绝对提升了11.26%和9.2%。实验结果表明SPNPLP比PLP具有更好的噪声鲁棒性。
- 蔡尚金鑫高圣翔潘接林颜永红
- 关键词:语音识别系统线性预测系数噪声鲁棒性子带能量感知连续语音识别
- 嵌入式语音识别中一种高效的图搜索算法
- 为了满足超大词表语法的识别任务在嵌入式语音识别系统上的应用,提出了一种高效的双层图搜索算法.该算法通过分离声学层和词法层来构建2层图搜索空间,其中声学层记录声学模型相关信息,词法层记录词表语法信息.利用这样简洁的搜索空间...
- 黎塔蔡尚赵庆卫潘接林颜永红
- 关键词:嵌入式语音识别
- 文献传递
- 嵌入式语音识别中一种高效的图搜索算法
- 2009年
- 为了满足超大词表语法的识别任务在嵌入式语音识别系统上的应用,提出了一种高效的双层图搜索算法.该算法通过分离声学层和词法层来构建2层图搜索空间,其中声学层记录声学模型相关信息,词法层记录词表语法信息.利用这样简洁的搜索空间可以使语音识别的解码过程更加紧凑有效.在对比实验中,传统的基于前缀合并的状态树搜索算法的大词表嵌入式单词拼读系统作为基线系统.实验结果表明,与基线系统相比,所提出的双层图搜索算法在系统解码速度相对提高10%的情况下,系统的动态内存占用仅为基线的8%.通过使用所提出的双层图搜索算法,大大提高了大词表嵌入式单词拼读系统的效率,使其更适用于大多数嵌入式平台.
- 黎塔蔡尚赵庆卫潘接林颜永红
- 关键词:嵌入式语音识别