TILLING,即Targeting Induced Local Lesions IN Genomes(定向诱导基因组局部突变技术),是由美国Fred Hutchinson癌症研究中心Steven Henikoff领导的研究小组发展起来的,是一种全新的反向遗传学研究方法。TILLING技术借助高通量的检测手段,快速有效地从由化学诱变剂(EMS)诱变过的突变群体中鉴定出点突变。目前,TILLING已被应用于多种生物的研究中。本文系统介绍了TILLING技术的基本原理、技术路线及其技术优势,同时列举了TILLING的应用实例,并展望了TILLING技术的应用前景。
[ Objective] This study was to breed rice cultivars with multi-resistance to Orseolia oryzae (Wood-Mason). [ Method] The Guangxi local cultivar GX-M001 (Jiangchao) with high resistance to Orseolia oryzae (Wood-Mason) was used to hybrid with the known resistance cultivars "Kangwenqingzhan" (harboring GM5 gene), OB677( harboring GM3 gene) from Sri Lanka, HT1350 and high yield end quality cultivar " Guiruanzhan". [ Result] Through pyramiding the multi-resistant genes via routine hybridization, the general resistances of the hybrids were remarkably enhanced. The grades of resistance were also improved, many of the combinations were endowed with a resistance at immune level (grade 0) ; and interestingly, the respective hybridization of GX-M001 (high resistance) with OB677( medium resistance) and HT1350(suscepti- ble) also generate two lines at immune level, which is probably the effects of additive effects of genes.[ Conclusion] By routine hybridization, multiple genes were successfully pyramided, thus generating novel rice lines with multiple resistances. For the rice breeding scientists at the grass-roots level, the resistance-resistance pyramiding is an effective approach to breed high resistance cultivars.