Rice blast disease is one of the most devastating diseases in rice production,which severely affects the high and stable yield of rice.The formation of appressorium plays a key role in the pathogenesis of Magnaporthe grisea in rice.It has been confirmed that a P-type ATPase (P-ATPase) is involved in the formation of appressorium.A number of small molecular substances are able to enter the pathogen from the host during the interactions between pathogens and hosts,thus resisting the infection of pathogens.In this study,a 232 bp DNA sequence with good specificity from the first exon of P-ATPase gene MgAPT2 was used as an interference fragment and was inserted into interference vector forward and reversely.The interfering vector was then transformed into rice blast-susceptible rice variety Nipponbare via Agrobacterium-mediated transformation.Identification of rice plants inoculated with M.grisea at the seedling stage and detection of the expression level of P-ATPase gene MgAPT2 showed that the expression level of MgAPT2 gene in transgenic plants was reduced and the rice blast resistance was improved.This study provided a new way for the innovation of rice germplasm resources resistant to rice blast disease.