Taking into account the influences of scatterer geometrical shapes on induced currents, an algorithm, termed the sparse-matrix method (SMM), is proposed to calculate radar cross section (RCS) of aircraft configuration. Based on the geometrical characteristics and the method of moment (MOM), the SMM points out that the strong current coupling zone could be predefined according to the shape of scatterers. Two geometrical parameters, the surface curvature and the electrical space between the field position and source position, are deducted to distinguish the dominant current coupling. Then the strong current coupling is computed to construct an impedance matrix having sparse nature, which is solved to compute RCS. The efficiency and feasibility of the SMM are demonstrated by computing electromagnetic scattering of some kinds of shapes such as a cone-sphere with a gap, a bi-arc column and a stealth aircraft configuration. The numerical results show that: (1) the accuracy of SMM is satisfied, as compared with MOM, and the computational time it spends is only about 8% of the MOM; (2) with the electrical space considered, making another allowance for the surface curvature can reduce the computation time by 9.5%.