Particles(including solid particles,liquid drops and gas bubbles)are ubiquitous in a large number of natural processes as well as in industrial productions.Their behaviors are of fundamental importance in multiphase systems since the existence of such dispersed particles influences the momentum,mass and heat transport behaviors in these systems.Up to now,a vast body of literature has been published in dealing with the transport phenomena related to a particle surrounded by a fluid under various physical circumstances.In this paper,principal research results for the transport process of a single spherical particle in pure extensional and simple shear flows presented in the literature,including our recent work,are generally reviewed in order to give a comprehensive knowledge in this area.
In our previous work, a low-shear stirred bioreactor was explored. With a pitched blade turbine impeller downflow(PBTD) used, the shear stress generated is high compared with that in some low shear axial flow impellers. KHX impeller is an efficient axial flow impeller, which provides large onflow diffusivity and low shear force. In this work, the KHX impeller was applied in a lower-shear bioreactor and the performance of this reactor was evaluated and compared with that of the PBTD impeller. The experimental results show that the KHX impeller can disperse gas at lower power consumption and gives greater gas–liquid volumetric mass transfer coefficients than PBTD at the same power consumption. An empirical correlation for evaluating the mass transfer coefficient of the KHX impeller in the bioreactor is presented to provide reference for its industrial application.
The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly.
Fe2+ oxidation by Acidithiobacillus ferrooxidans(At.ferrooxidans) under different solid contents by adding inert Al2O3 powder was examined in rotating-drum and stirred-tank reactors.The results show that the bioactivity of At.ferrooxidans in the stirred-tank is higher than that in the rotating-drum in the absence of Al2O3 powder,but the biooxidation rate of Fe2+ decreases markedly from 0.23 g/(L·h) to 0.025 g/(L·h) with increasing the content of Al2O3 powder from 0 to 50%(mass fraction) in the stirred-tank probably due to the deactivation of At.ferrooxidans resulting from the collision and friction of solid particles.The increase in Al2O3 content has a little adverse effect on the bioactivity of At.ferrooxidans in the rotating-drum due to different mixing mechanisms of the two reactors.The biooxidation rate of Fe2+ in the rotating-drum is higher than that in the stirred-tank at the same content of Al2O3 powder,especially at high solid content.The higher bioactivity of At.ferrooxidans can be maintained for allowing high solid content in the rotating-drum reactor,but its application potential still needs to be verified further by the sulfide bioleaching for the property differences of Al2O3 powder and sulfide minerals.