A proper total coloring of a graph G such that there are at least 4 colors on those vertices and edges incident with a cycle of G, is called acyclic total coloring. The acyclic total chromatic number of G is the least number of colors in an acyclic total coloring of G. In this paper, it is proved that the acyclic total chromatic number of a planar graph G of maximum degree at least k and without 1 cycles is at most △(G) + 2 if (k, l) ∈ {(6, 3), (7, 4), (6, 5), (7, 6)}.
A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, it is shown that each 1-planar graph with minimum degree 7 contains a copy of K2 V (K1 ∪ K2) with all vertices of degree at most 12. In addition, we also prove the existence of a graph K1 V (K1∪K2) with relatively small degree vertices in 1-planar graphs with minimum degree at least 6.