This paper is devoted to the two-dimensional nonlinear modeling of the fluid-solid interaction (FSI) between fabric and air flow, which is based on the Automatic Incremental Dynamic Nonlinear Analysis (AIDNA)-FSI program in order to study the dynamic bending features of fabrics in a specific air flow filed. The computational fluid dynamics (CFD) model for flow and the finite element model (FEM) for fabric was set up to constitute an FSI model in which the geometric nonlinear behavior and the dynamic stress-strain variation of the relatively soft fabric material were taken into account. Several FSI cases with different time-dependent wind load and the model frequency analysis for fabric were carried out. The dynamic response of fabric and the distribution of fluid variables were investigated. The results of numerical simulation and experiments fit quite well. Hence, this work contributes to the research of modeling the dynamic bending behavior of fabrics in air field.
Fabric-skin adhesion was objectively described by the indices of the maximum adhesion force F_(max) , the maximum separation distance L_(max) ,and adhesion work W as well as the adhesion force-separation distance curve. Firstly,gray correlation analysis method was adopted to investigate the correlation levels between adhesion indices,and secondly the relative importance of fabric structural parameters to fabric-skin adhesion,as well as the correlation levels between skin adhesion, water absorption, and wicking properties of the fabric. The results prove that W exhibits clear correlations with both F_(max) and L_(max) , yet the relevance between F_(max) and L_(max) is weak. Fabric adhesion indices are most associated with fabric mass and least with fabric thickness,whereas fabric wicking and water absorption present closest correlation with fabric thickness. Therefore, it is concluded that the relevance between fabric wicking, water absorption, and skin-adhesion properties are rather comprehensive than straight.