We propose an efficient scheme for optimizing the optical memory of a sequence of signal light pulses in a system of ultracold atoms in ∧ configuration.The memory procedure consists of write-in,storage,and retrieval phases.By applying a weak microwave field in the storage stage,additional phase-dependent terms are included,and the contrast of the output signal pulses can be dynamically controlled(enhanced or suppressed) through manipulating the relative phase φ between optical and microwave fields.Our numerical analysis shows that the contrast is enhanced to the most extent when φ = 1.5π.In addition,the contrast is in proportion to the Rabi frequency of the microwave field with a certain relative phase.
The typically tiny effect of radiation damping on a moving body can be amplified to a favorable extent by exploiting the sharp reflectivity slope at one edge of an optically induced stop-band in atoms loaded into an optical lattice.In this paper,this phenomenon is demonstrated for the periodically trapped and coherently driven cold 87Rb atoms,where radiation damping might be much larger than that anticipated in previous proposals and become comparable with radiation pressure.Such an enhancement could be observed even at speeds of only a few meters per second with less than 1.0%absorption,making radiation damping experimentally accessible.