您的位置: 专家智库 > >

国家自然科学基金(10872203)

作品数:4 被引量:8H指数:2
相关作者:孔高攀郑旭李战华孙树伟更多>>
相关机构:中国科学院力学研究所更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划中国科学院知识创新工程重要方向项目更多>>
相关领域:理学农业科学更多>>

文献类型

  • 4篇期刊文章
  • 2篇会议论文

领域

  • 5篇理学
  • 1篇农业科学

主题

  • 3篇MICRO
  • 2篇微结构
  • 2篇NANO
  • 1篇液固
  • 1篇液固界面
  • 1篇阵列
  • 1篇疏水
  • 1篇疏水表面
  • 1篇界面滑移
  • 1篇滑移
  • 1篇减阻
  • 1篇耗散
  • 1篇耗散效应
  • 1篇壁面
  • 1篇PRESSU...
  • 1篇THE_IN...
  • 1篇CHANNE...
  • 1篇ENRICH...
  • 1篇INDUCE...
  • 1篇MEASUR...

机构

  • 4篇中国科学院力...

作者

  • 4篇李战华
  • 4篇郑旭
  • 2篇孔高攀
  • 1篇孙树伟

传媒

  • 1篇水动力学研究...
  • 1篇Acta M...
  • 1篇Journa...
  • 1篇实验流体力学

年份

  • 4篇2013
  • 1篇2012
  • 1篇2009
4 条 记 录,以下是 1-6
排序方式:
阵列纳米通道对微纳复合管道耗散作用的强化
2013年
微纳复合管道是目前微流控应用中的热点之一。该文分别模拟了单根纳米通道和纳米通道阵列对微纳管道结合部的离子耗散作用的影响,计算了两种管道系统内的离子浓度场、电势场、速度场及压力分布。计算结果表明:阵列纳米通道比单纳米通道的离子耗散强度提高了5倍;由Nernst-Planck方程分析得出电场梯度引起的电迁移在耗散过程中其主导作用;采用Navier-Stokes方程引入电场体积力模拟得出,阵列纳米通道连接的微纳管道耗散区存在多对涡漩。这增强了耗散区扩展的速度,使耗散区浓度值更低且扩展空间更大,从而解释了阵列纳米管道连接的微纳复合管道相比单纳米通道具有更强的耗散效应的原因。
孔高攀郑旭李战华
关键词:耗散效应
关于液固界面滑移长度测量的讨论
微纳尺度流动中,液固边界滑移问题已经得到了人们的关注。流体滑移边界条件常常采用Navier提出来的线性滑移模型来描述:u_(slip)=bγw=b(αu)/(αz)|w其中u_(slip)为边界上的流体滑移速度,b为滑移...
李战华郑旭
关键词:液固界面
文献传递
Observation of the induced pressure in a hybrid micro/nano-channel
2013年
This paper studies the flow characteristics in micro/nano-channels subjected to an applied electric field. The nano-channel flow was observed by means of the fluorescence Calcein. A Fluorescence Concentration Gradient Interface (FCGI) was observed across the nano-channel array. The front of the FCGI was shown to have an analogous parabolic shape. The propagation of this interface reflects indirectly the induced pressure at the micro/nano-channel junction, where the enrichment-depletion processes are known to take place. This induced pressure was predicted by numerical simulations, and this paper gives the first experimental evidence.
孔高攀郑旭李战华徐征
壁面带微结构管道内Cassie状态稳定性的实验研究被引量:3
2013年
保持液体在微结构表面处于Cassie状态,是流动减阻的关键。首先利用MicroPTV分别测量了带微结构侧壁处于Cassie和Wenzel状态下的流场速度,表明Cassie状态下近壁速度提高至光滑表面的1.6倍,而Wenzel状态下近壁速度将减小。通过精细控制微管道的驱动压强,观察了液体在近壁由Cassie向Wenzel状态的转变,并测出C/W转变的临界压强值Δpcr约10.9kPa,与Laplace理论预测值10.15kPa基本相符。考虑到Cassie状态失稳也会发生在液体进样过程中,实验还观察了微结构角点对液体进样的"锚定"作用,并初步分析了液体进样中自由液面在微结构表面保持Cassie状态的条件。
孙树伟郑旭孔高攀李战华
关键词:减阻微结构
微结构疏水表面对界面流动的影响
<正>通过MicroPIV/PTV系统测量带有微结构的PDMS微流道(22μm×6μm,长8mm)内的速度分布。流道侧壁的PDMS微结构是通过软光刻微加工工艺制成,其特征宽度在1~10μm范围。为了研究微结构尺寸的影响,...
郑旭李战华
文献传递
The influence of nano-particle tracers on the slip length measurements by microPTV被引量:5
2013年
Direct measurement of slip length is based on the measured fluid velocity near solid boundary. However, previous micro particle image velocimetry/particle tracking velocimetry (microPIV/PTV) measurements have reported surprisingly large measured near-wall velocities of pressure-driven flow in apparent contradiction with the no-slip hy-pothesis and experimental results from other techniques. To better interpret the measured results of the microPIV/PTV, we performed velocity profile measurements near a hy-drophilic wall (z = 0.25-1.5 μm) with two sizes of tracer particles (φ 50 nm and φ200 nm). The experimental results indicate that, at less than 1 μm from the wall, the deviations between the measured velocities and no-slip theoretical values obviously decrease from 93% of φ200 nm particles to 48% of φ50 nm particles. The Boltzmann-like exponential measured particle concentrations near wall were found. Based on the non linear Boltzmann distribution of particle concentration and the effective focus plane thickness, we illustrated the reason of the apparent velocity increase near wall and proposed a method to correct the measured velocity profile. By this method, the deviations between the corrected measured velocities and the no-slip theoretical velocity decrease from 45.8% to 10%, and the measured slip length on hy-drophilic glass is revised from 75 nm to 16 nm. These results indicated that the particle size and the biased particle concentration distribution can significantly affect near wall velocity measurement via microPIV/PTV, and result in larger measured velocity and slip length close to wall.
Xu ZhengGao-Pan KongZhan-HuaSilber-Li
共1页<1>
聚类工具0