In this paper, a class of strongly nonlinear singularly perturbed interior layer problems are considered by the theory of differential inequalities and the corrective theory of interior layer. The existence of solution is proved and the asymptotic behavior of solution for the boundary value problems are studied. And the satisfying result is obtained.
The paper first deals with the existence of the maximal attractor of classical solution for reaction diffusion equation with dispersion, and gives the sup-norm estimate for the attractor. This estimate is optimal for the attractor under Neumann boundary condition. Next, the same problem is discussed for reaction diffusion system with uniformly contracting rectangle, and it reveals that the maximal attractor of classical solution for such system in the whole space is only necessary to be established in some invariant region. Finally, a few examples of application are given.